{"title":"SiamMAF:多路径和特征增强型热红外跟踪器","authors":"Weisheng Li, Yuhao Fang, Lanbing Lv, Shunping Chen","doi":"10.1016/j.patrec.2024.09.003","DOIUrl":null,"url":null,"abstract":"<div><p>Thermal infrared (TIR) images are visually blurred and low in information content. Some TIR trackers focus on enhancing the semantic information of TIR features, neglecting the equally important detailed information for TIR tracking. After target localization, detailed information can assist the tracker in generating accurate prediction boxes. In addition, simple element-wise addition is not a way to fully utilize and fuse multiple response maps. To address these issues, this study proposes a multipath and feature-enhanced Siamese tracker (SiamMAF) for TIR tracking. We design a feature-enhanced module (FEM) based on complementarity, which can highlight the key semantic information of the target and preserve the detailed information of objects. Furthermore, we introduce a response fusion module (RFM) that can adaptively fuse multiple response maps. Extensive experimental results on two challenging benchmarks show that SiamMAF outperforms many existing state-of-the-art TIR trackers and runs at a steady 31FPS.</p></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"186 ","pages":"Pages 37-46"},"PeriodicalIF":3.9000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SiamMAF: A multipath and feature-enhanced thermal infrared tracker\",\"authors\":\"Weisheng Li, Yuhao Fang, Lanbing Lv, Shunping Chen\",\"doi\":\"10.1016/j.patrec.2024.09.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Thermal infrared (TIR) images are visually blurred and low in information content. Some TIR trackers focus on enhancing the semantic information of TIR features, neglecting the equally important detailed information for TIR tracking. After target localization, detailed information can assist the tracker in generating accurate prediction boxes. In addition, simple element-wise addition is not a way to fully utilize and fuse multiple response maps. To address these issues, this study proposes a multipath and feature-enhanced Siamese tracker (SiamMAF) for TIR tracking. We design a feature-enhanced module (FEM) based on complementarity, which can highlight the key semantic information of the target and preserve the detailed information of objects. Furthermore, we introduce a response fusion module (RFM) that can adaptively fuse multiple response maps. Extensive experimental results on two challenging benchmarks show that SiamMAF outperforms many existing state-of-the-art TIR trackers and runs at a steady 31FPS.</p></div>\",\"PeriodicalId\":54638,\"journal\":{\"name\":\"Pattern Recognition Letters\",\"volume\":\"186 \",\"pages\":\"Pages 37-46\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167865524002599\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167865524002599","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
摘要
热红外(TIR)图像视觉模糊,信息含量低。一些热红外跟踪器只注重增强热红外特征的语义信息,而忽略了对热红外跟踪同样重要的详细信息。目标定位后,详细信息可帮助跟踪器生成准确的预测框。此外,简单的元素相加并不能充分利用和融合多个响应图。为了解决这些问题,本研究提出了一种用于 TIR 跟踪的多路径和特征增强型连体跟踪器(SiamMAF)。我们设计了一个基于互补性的特征增强模块(FEM),它能突出目标的关键语义信息,并保留物体的详细信息。此外,我们还引入了响应融合模块(RFM),它可以自适应地融合多个响应图。在两个具有挑战性的基准上进行的大量实验结果表明,SiamMAF 的性能优于许多现有的一流 TIR 跟踪器,并且能以 31FPS 的速度稳定运行。
SiamMAF: A multipath and feature-enhanced thermal infrared tracker
Thermal infrared (TIR) images are visually blurred and low in information content. Some TIR trackers focus on enhancing the semantic information of TIR features, neglecting the equally important detailed information for TIR tracking. After target localization, detailed information can assist the tracker in generating accurate prediction boxes. In addition, simple element-wise addition is not a way to fully utilize and fuse multiple response maps. To address these issues, this study proposes a multipath and feature-enhanced Siamese tracker (SiamMAF) for TIR tracking. We design a feature-enhanced module (FEM) based on complementarity, which can highlight the key semantic information of the target and preserve the detailed information of objects. Furthermore, we introduce a response fusion module (RFM) that can adaptively fuse multiple response maps. Extensive experimental results on two challenging benchmarks show that SiamMAF outperforms many existing state-of-the-art TIR trackers and runs at a steady 31FPS.
期刊介绍:
Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition.
Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.