SiamMAF:多路径和特征增强型热红外跟踪器

IF 3.9 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pattern Recognition Letters Pub Date : 2024-09-03 DOI:10.1016/j.patrec.2024.09.003
Weisheng Li, Yuhao Fang, Lanbing Lv, Shunping Chen
{"title":"SiamMAF:多路径和特征增强型热红外跟踪器","authors":"Weisheng Li,&nbsp;Yuhao Fang,&nbsp;Lanbing Lv,&nbsp;Shunping Chen","doi":"10.1016/j.patrec.2024.09.003","DOIUrl":null,"url":null,"abstract":"<div><p>Thermal infrared (TIR) images are visually blurred and low in information content. Some TIR trackers focus on enhancing the semantic information of TIR features, neglecting the equally important detailed information for TIR tracking. After target localization, detailed information can assist the tracker in generating accurate prediction boxes. In addition, simple element-wise addition is not a way to fully utilize and fuse multiple response maps. To address these issues, this study proposes a multipath and feature-enhanced Siamese tracker (SiamMAF) for TIR tracking. We design a feature-enhanced module (FEM) based on complementarity, which can highlight the key semantic information of the target and preserve the detailed information of objects. Furthermore, we introduce a response fusion module (RFM) that can adaptively fuse multiple response maps. Extensive experimental results on two challenging benchmarks show that SiamMAF outperforms many existing state-of-the-art TIR trackers and runs at a steady 31FPS.</p></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"186 ","pages":"Pages 37-46"},"PeriodicalIF":3.9000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SiamMAF: A multipath and feature-enhanced thermal infrared tracker\",\"authors\":\"Weisheng Li,&nbsp;Yuhao Fang,&nbsp;Lanbing Lv,&nbsp;Shunping Chen\",\"doi\":\"10.1016/j.patrec.2024.09.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Thermal infrared (TIR) images are visually blurred and low in information content. Some TIR trackers focus on enhancing the semantic information of TIR features, neglecting the equally important detailed information for TIR tracking. After target localization, detailed information can assist the tracker in generating accurate prediction boxes. In addition, simple element-wise addition is not a way to fully utilize and fuse multiple response maps. To address these issues, this study proposes a multipath and feature-enhanced Siamese tracker (SiamMAF) for TIR tracking. We design a feature-enhanced module (FEM) based on complementarity, which can highlight the key semantic information of the target and preserve the detailed information of objects. Furthermore, we introduce a response fusion module (RFM) that can adaptively fuse multiple response maps. Extensive experimental results on two challenging benchmarks show that SiamMAF outperforms many existing state-of-the-art TIR trackers and runs at a steady 31FPS.</p></div>\",\"PeriodicalId\":54638,\"journal\":{\"name\":\"Pattern Recognition Letters\",\"volume\":\"186 \",\"pages\":\"Pages 37-46\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167865524002599\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167865524002599","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

热红外(TIR)图像视觉模糊,信息含量低。一些热红外跟踪器只注重增强热红外特征的语义信息,而忽略了对热红外跟踪同样重要的详细信息。目标定位后,详细信息可帮助跟踪器生成准确的预测框。此外,简单的元素相加并不能充分利用和融合多个响应图。为了解决这些问题,本研究提出了一种用于 TIR 跟踪的多路径和特征增强型连体跟踪器(SiamMAF)。我们设计了一个基于互补性的特征增强模块(FEM),它能突出目标的关键语义信息,并保留物体的详细信息。此外,我们还引入了响应融合模块(RFM),它可以自适应地融合多个响应图。在两个具有挑战性的基准上进行的大量实验结果表明,SiamMAF 的性能优于许多现有的一流 TIR 跟踪器,并且能以 31FPS 的速度稳定运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SiamMAF: A multipath and feature-enhanced thermal infrared tracker

Thermal infrared (TIR) images are visually blurred and low in information content. Some TIR trackers focus on enhancing the semantic information of TIR features, neglecting the equally important detailed information for TIR tracking. After target localization, detailed information can assist the tracker in generating accurate prediction boxes. In addition, simple element-wise addition is not a way to fully utilize and fuse multiple response maps. To address these issues, this study proposes a multipath and feature-enhanced Siamese tracker (SiamMAF) for TIR tracking. We design a feature-enhanced module (FEM) based on complementarity, which can highlight the key semantic information of the target and preserve the detailed information of objects. Furthermore, we introduce a response fusion module (RFM) that can adaptively fuse multiple response maps. Extensive experimental results on two challenging benchmarks show that SiamMAF outperforms many existing state-of-the-art TIR trackers and runs at a steady 31FPS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pattern Recognition Letters
Pattern Recognition Letters 工程技术-计算机:人工智能
CiteScore
12.40
自引率
5.90%
发文量
287
审稿时长
9.1 months
期刊介绍: Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition. Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.
期刊最新文献
Personalized Federated Learning on long-tailed data via knowledge distillation and generated features Adaptive feature alignment for adversarial training Discrete diffusion models with Refined Language-Image Pre-trained representations for remote sensing image captioning A unified framework to stereotyped behavior detection for screening Autism Spectrum Disorder Explainable hypergraphs for gait based Parkinson classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1