基于双蛋白靶点的生物活性分子生成的统一条件扩散框架

Lei Huang;Zheng Yuan;Huihui Yan;Rong Sheng;Linjing Liu;Fuzhou Wang;Weidun Xie;Nanjun Chen;Fei Huang;Songfang Huang;Ka-Chun Wong;Yaoyun Zhang
{"title":"基于双蛋白靶点的生物活性分子生成的统一条件扩散框架","authors":"Lei Huang;Zheng Yuan;Huihui Yan;Rong Sheng;Linjing Liu;Fuzhou Wang;Weidun Xie;Nanjun Chen;Fei Huang;Songfang Huang;Ka-Chun Wong;Yaoyun Zhang","doi":"10.1109/TAI.2024.3387402","DOIUrl":null,"url":null,"abstract":"Advances in deep generative models shed light on \n<italic>de novo</i>\n molecule generation with desired properties. However, molecule generation targeted for dual protein targets still faces formidable challenges including insufficient protein 3-D structure data requisition for conditioned model training, inflexibility of auto-regressive sampling, and model generalization to unseen targets. Here, this study proposed diffusion model for dual targets-based molecule generation (DiffDTM), a novel unified structure-free deep generative framework based on a diffusion model for dual-target based molecule generation to address the above issues. Specifically, DiffDTM receives representations of protein sequences and molecular graphs pretrained on large-scale datasets as inputs instead of protein and molecular conformations and incorporates an information fusion module to achieve conditional generation in a one-shot manner. We perform comprehensive multiview experiments to demonstrate that DiffDTM can generate druglike, synthesis-accessible, novel, and high-binding affinity molecules targeting specific dual proteins, outperforming the state-of-the-art (SOTA) models in terms of multiple evaluation metrics. Furthermore, DiffDTM could directly generate molecules toward dopamine receptor D2 (DRD2) and 5-hydroxytryptamine receptor 1A (HTR1A) as new antipsychotics. Experimental comparisons highlight the generalizability of DiffDTM to easily adapt to unseen dual targets and generate bioactive molecules, addressing the issues of insufficient active molecule data for model training when new targets are encountered.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"5 9","pages":"4595-4606"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Unified Conditional Diffusion Framework for Dual Protein Targets-Based Bioactive Molecule Generation\",\"authors\":\"Lei Huang;Zheng Yuan;Huihui Yan;Rong Sheng;Linjing Liu;Fuzhou Wang;Weidun Xie;Nanjun Chen;Fei Huang;Songfang Huang;Ka-Chun Wong;Yaoyun Zhang\",\"doi\":\"10.1109/TAI.2024.3387402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advances in deep generative models shed light on \\n<italic>de novo</i>\\n molecule generation with desired properties. However, molecule generation targeted for dual protein targets still faces formidable challenges including insufficient protein 3-D structure data requisition for conditioned model training, inflexibility of auto-regressive sampling, and model generalization to unseen targets. Here, this study proposed diffusion model for dual targets-based molecule generation (DiffDTM), a novel unified structure-free deep generative framework based on a diffusion model for dual-target based molecule generation to address the above issues. Specifically, DiffDTM receives representations of protein sequences and molecular graphs pretrained on large-scale datasets as inputs instead of protein and molecular conformations and incorporates an information fusion module to achieve conditional generation in a one-shot manner. We perform comprehensive multiview experiments to demonstrate that DiffDTM can generate druglike, synthesis-accessible, novel, and high-binding affinity molecules targeting specific dual proteins, outperforming the state-of-the-art (SOTA) models in terms of multiple evaluation metrics. Furthermore, DiffDTM could directly generate molecules toward dopamine receptor D2 (DRD2) and 5-hydroxytryptamine receptor 1A (HTR1A) as new antipsychotics. Experimental comparisons highlight the generalizability of DiffDTM to easily adapt to unseen dual targets and generate bioactive molecules, addressing the issues of insufficient active molecule data for model training when new targets are encountered.\",\"PeriodicalId\":73305,\"journal\":{\"name\":\"IEEE transactions on artificial intelligence\",\"volume\":\"5 9\",\"pages\":\"4595-4606\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on artificial intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10497533/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10497533/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

深度生成模型的进步为从头生成具有所需特性的分子提供了启示。然而,针对双蛋白质靶标的分子生成仍然面临着巨大的挑战,包括用于条件模型训练的蛋白质三维结构数据征集不足、自动回归采样缺乏灵活性以及模型泛化到未见靶标等。为解决上述问题,本研究提出了基于扩散模型的双目标分子生成扩散模型(DiffDTM),这是一种基于扩散模型的新型统一无结构深度生成框架。具体来说,DiffDTM 接收在大规模数据集上预训练的蛋白质序列和分子图的表示作为输入,而不是蛋白质和分子构象,并结合信息融合模块,以一次性的方式实现条件生成。我们进行了全面的多视角实验,证明 DiffDTM 可以生成药物样的、可合成的、新颖的和高结合亲和力的分子,靶向特定的双蛋白,在多个评价指标方面优于最先进的(SOTA)模型。此外,DiffDTM 还能直接生成针对多巴胺受体 D2(DRD2)和 5- 羟色胺受体 1A(HTR1A)的分子,作为新型抗精神病药物。实验比较凸显了 DiffDTM 的通用性,它可以轻松适应未知的双重靶点并生成生物活性分子,解决了遇到新靶点时模型训练所需的活性分子数据不足的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Unified Conditional Diffusion Framework for Dual Protein Targets-Based Bioactive Molecule Generation
Advances in deep generative models shed light on de novo molecule generation with desired properties. However, molecule generation targeted for dual protein targets still faces formidable challenges including insufficient protein 3-D structure data requisition for conditioned model training, inflexibility of auto-regressive sampling, and model generalization to unseen targets. Here, this study proposed diffusion model for dual targets-based molecule generation (DiffDTM), a novel unified structure-free deep generative framework based on a diffusion model for dual-target based molecule generation to address the above issues. Specifically, DiffDTM receives representations of protein sequences and molecular graphs pretrained on large-scale datasets as inputs instead of protein and molecular conformations and incorporates an information fusion module to achieve conditional generation in a one-shot manner. We perform comprehensive multiview experiments to demonstrate that DiffDTM can generate druglike, synthesis-accessible, novel, and high-binding affinity molecules targeting specific dual proteins, outperforming the state-of-the-art (SOTA) models in terms of multiple evaluation metrics. Furthermore, DiffDTM could directly generate molecules toward dopamine receptor D2 (DRD2) and 5-hydroxytryptamine receptor 1A (HTR1A) as new antipsychotics. Experimental comparisons highlight the generalizability of DiffDTM to easily adapt to unseen dual targets and generate bioactive molecules, addressing the issues of insufficient active molecule data for model training when new targets are encountered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents Front Cover IEEE Transactions on Artificial Intelligence Publication Information Table of Contents Front Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1