{"title":"通过学习显式条件分布预测本科生成绩的新方法","authors":"Na Zhang;Ming Liu;Lin Wang;Shuangrong Liu;Runyuan Sun;Bo Yang;Shenghui Zhu;Chengdong Li;Cheng Yang;Yuhu Cheng","doi":"10.1109/TAI.2024.3416077","DOIUrl":null,"url":null,"abstract":"Educational data mining (EDM) offers an effective solution to predict students’ course grades in the next term. Conventional grade prediction methods can be viewed as regressing an expectation of the probability distribution of the student's grade, typically called single-value grade prediction. The reliable prediction outcomes of these methods depend on the complete input information related to students. However, next-term grade prediction often encounters the challenge of incomplete input information due to the inaccessibility of future data and the privacy of data. In this scenario, single-value grade prediction struggles to assess students’ academic status, as it may not be represented and assessed by relying on a singular expectation value. This limitation increases the risk of misjudgment, and may lead to errors in educational decision-making. Considering the challenge of collecting complete input information, we shift from traditional single-value predictions to forecasting the explicit probability distribution of the course grade. The probability distribution of the grade can assess the students’ academic status by providing probabilities corresponding to all possible grade values rather than relying solely on an expectation value, which offers the foundation to support the educators’ decision-making. In this article, the course grade distribution prediction (CGDP) model is proposed, aiming to estimate an explicit conditional probability distribution of course grades in the next term. This model can identify at-risk students, offering comprehensive decision-making information for educators and students. To ensure precise distribution predictions, a calibration method is also employed to improve the alignment between predicted and actual probabilities. Experimental results verify the effectiveness of the proposed model in early grade warning for undergraduates, based on real university data.","PeriodicalId":73305,"journal":{"name":"IEEE transactions on artificial intelligence","volume":"5 9","pages":"4837-4848"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Grades Prediction Method for Undergraduate Students by Learning Explicit Conditional Distribution\",\"authors\":\"Na Zhang;Ming Liu;Lin Wang;Shuangrong Liu;Runyuan Sun;Bo Yang;Shenghui Zhu;Chengdong Li;Cheng Yang;Yuhu Cheng\",\"doi\":\"10.1109/TAI.2024.3416077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Educational data mining (EDM) offers an effective solution to predict students’ course grades in the next term. Conventional grade prediction methods can be viewed as regressing an expectation of the probability distribution of the student's grade, typically called single-value grade prediction. The reliable prediction outcomes of these methods depend on the complete input information related to students. However, next-term grade prediction often encounters the challenge of incomplete input information due to the inaccessibility of future data and the privacy of data. In this scenario, single-value grade prediction struggles to assess students’ academic status, as it may not be represented and assessed by relying on a singular expectation value. This limitation increases the risk of misjudgment, and may lead to errors in educational decision-making. Considering the challenge of collecting complete input information, we shift from traditional single-value predictions to forecasting the explicit probability distribution of the course grade. The probability distribution of the grade can assess the students’ academic status by providing probabilities corresponding to all possible grade values rather than relying solely on an expectation value, which offers the foundation to support the educators’ decision-making. In this article, the course grade distribution prediction (CGDP) model is proposed, aiming to estimate an explicit conditional probability distribution of course grades in the next term. This model can identify at-risk students, offering comprehensive decision-making information for educators and students. To ensure precise distribution predictions, a calibration method is also employed to improve the alignment between predicted and actual probabilities. Experimental results verify the effectiveness of the proposed model in early grade warning for undergraduates, based on real university data.\",\"PeriodicalId\":73305,\"journal\":{\"name\":\"IEEE transactions on artificial intelligence\",\"volume\":\"5 9\",\"pages\":\"4837-4848\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on artificial intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10562058/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10562058/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Novel Grades Prediction Method for Undergraduate Students by Learning Explicit Conditional Distribution
Educational data mining (EDM) offers an effective solution to predict students’ course grades in the next term. Conventional grade prediction methods can be viewed as regressing an expectation of the probability distribution of the student's grade, typically called single-value grade prediction. The reliable prediction outcomes of these methods depend on the complete input information related to students. However, next-term grade prediction often encounters the challenge of incomplete input information due to the inaccessibility of future data and the privacy of data. In this scenario, single-value grade prediction struggles to assess students’ academic status, as it may not be represented and assessed by relying on a singular expectation value. This limitation increases the risk of misjudgment, and may lead to errors in educational decision-making. Considering the challenge of collecting complete input information, we shift from traditional single-value predictions to forecasting the explicit probability distribution of the course grade. The probability distribution of the grade can assess the students’ academic status by providing probabilities corresponding to all possible grade values rather than relying solely on an expectation value, which offers the foundation to support the educators’ decision-making. In this article, the course grade distribution prediction (CGDP) model is proposed, aiming to estimate an explicit conditional probability distribution of course grades in the next term. This model can identify at-risk students, offering comprehensive decision-making information for educators and students. To ensure precise distribution predictions, a calibration method is also employed to improve the alignment between predicted and actual probabilities. Experimental results verify the effectiveness of the proposed model in early grade warning for undergraduates, based on real university data.