在固体和液体培养基中利用 MALDI-TOF MS 进行脓肿分枝杆菌亚种鉴定的机器学习贡献

IF 5.7 2区 生物学 Microbial Biotechnology Pub Date : 2024-09-10 DOI:10.1111/1751-7915.14545
Alexandre Godmer, Lise Bigey, Quentin Giai-Gianetto, Gautier Pierrat, Noshine Mohammad, Faiza Mougari, Renaud Piarroux, Nicolas Veziris, Alexandra Aubry
{"title":"在固体和液体培养基中利用 MALDI-TOF MS 进行脓肿分枝杆菌亚种鉴定的机器学习贡献","authors":"Alexandre Godmer,&nbsp;Lise Bigey,&nbsp;Quentin Giai-Gianetto,&nbsp;Gautier Pierrat,&nbsp;Noshine Mohammad,&nbsp;Faiza Mougari,&nbsp;Renaud Piarroux,&nbsp;Nicolas Veziris,&nbsp;Alexandra Aubry","doi":"10.1111/1751-7915.14545","DOIUrl":null,"url":null,"abstract":"<p><i>Mycobacterium abscessus</i> (MABS) displays differential subspecies susceptibility to macrolides. Thus, identifying MABS's subspecies (<i>M. abscessus</i>, <i>M. bolletii</i> and <i>M. massiliense</i>) is a clinical necessity for guiding treatment decisions. We aimed to assess the potential of Machine Learning (ML)-based classifiers coupled to Matrix-Assisted Laser Desorption/Ionization Time-of-Flight (MALDI-TOF) MS to identify MABS subspecies. Two spectral databases were created by using 40 confirmed MABS strains. Spectra were obtained by using MALDI-TOF MS from strains cultivated on solid (Columbia Blood Agar, CBA) or liquid (MGIT®) media for 1 to 13 days. Each database was divided into a dataset for ML-based pipeline development and a dataset to assess the performance. An in-house programme was developed to identify discriminant peaks specific to each subspecies. The peak-based approach successfully distinguished <i>M. massiliense</i> from the other subspecies for strains grown on CBA. The ML approach achieved 100% accuracy for subspecies identification on CBA, falling to 77.5% on MGIT®. This study validates the usefulness of ML, in particular the Random Forest algorithm, to discriminate MABS subspecies by MALDI-TOF MS. However, identification in MGIT®, a medium largely used in mycobacteriology laboratories, is not yet reliable and should be a development priority.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"17 9","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.14545","citationCount":"0","resultStr":"{\"title\":\"Contribution of machine learning for subspecies identification from Mycobacterium abscessus with MALDI-TOF MS in solid and liquid media\",\"authors\":\"Alexandre Godmer,&nbsp;Lise Bigey,&nbsp;Quentin Giai-Gianetto,&nbsp;Gautier Pierrat,&nbsp;Noshine Mohammad,&nbsp;Faiza Mougari,&nbsp;Renaud Piarroux,&nbsp;Nicolas Veziris,&nbsp;Alexandra Aubry\",\"doi\":\"10.1111/1751-7915.14545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>Mycobacterium abscessus</i> (MABS) displays differential subspecies susceptibility to macrolides. Thus, identifying MABS's subspecies (<i>M. abscessus</i>, <i>M. bolletii</i> and <i>M. massiliense</i>) is a clinical necessity for guiding treatment decisions. We aimed to assess the potential of Machine Learning (ML)-based classifiers coupled to Matrix-Assisted Laser Desorption/Ionization Time-of-Flight (MALDI-TOF) MS to identify MABS subspecies. Two spectral databases were created by using 40 confirmed MABS strains. Spectra were obtained by using MALDI-TOF MS from strains cultivated on solid (Columbia Blood Agar, CBA) or liquid (MGIT®) media for 1 to 13 days. Each database was divided into a dataset for ML-based pipeline development and a dataset to assess the performance. An in-house programme was developed to identify discriminant peaks specific to each subspecies. The peak-based approach successfully distinguished <i>M. massiliense</i> from the other subspecies for strains grown on CBA. The ML approach achieved 100% accuracy for subspecies identification on CBA, falling to 77.5% on MGIT®. This study validates the usefulness of ML, in particular the Random Forest algorithm, to discriminate MABS subspecies by MALDI-TOF MS. However, identification in MGIT®, a medium largely used in mycobacteriology laboratories, is not yet reliable and should be a development priority.</p>\",\"PeriodicalId\":209,\"journal\":{\"name\":\"Microbial Biotechnology\",\"volume\":\"17 9\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.14545\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.14545\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.14545","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脓肿分枝杆菌(MABS)对大环内酯类药物的敏感性存在亚种差异。因此,识别 MABS 的亚种(M. abscessus、M. bolletii 和 M. massiliense)是指导治疗决策的临床必需。我们的目的是评估基于机器学习(ML)的分类器与基质辅助激光解吸/电离飞行时间(MALDI-TOF)质谱联用鉴定 MABS 亚种的潜力。利用 40 个已确认的 MABS 菌株创建了两个光谱数据库。光谱是通过 MALDI-TOF MS 从在固体(哥伦比亚血液琼脂,CBA)或液体(MGIT®)培养基上培养 1 到 13 天的菌株中获得的。每个数据库都分为一个数据集和一个数据集,前者用于基于 ML 的管道开发,后者用于评估性能。开发了一个内部程序来识别每个亚种特有的鉴别峰。对于在 CBA 上生长的菌株,基于峰值的方法成功地将 Massiliense 真菌与其他亚种区分开来。ML 方法在 CBA 上鉴定亚种的准确率达到 100%,而在 MGIT® 上的准确率仅为 77.5%。这项研究验证了 ML(特别是随机森林算法)在通过 MALDI-TOF MS 鉴别 MABS 亚种方面的实用性。然而,在分枝杆菌学实验室中广泛使用的 MGIT® 培养基上进行鉴定尚不可靠,因此应优先进行开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Contribution of machine learning for subspecies identification from Mycobacterium abscessus with MALDI-TOF MS in solid and liquid media

Mycobacterium abscessus (MABS) displays differential subspecies susceptibility to macrolides. Thus, identifying MABS's subspecies (M. abscessus, M. bolletii and M. massiliense) is a clinical necessity for guiding treatment decisions. We aimed to assess the potential of Machine Learning (ML)-based classifiers coupled to Matrix-Assisted Laser Desorption/Ionization Time-of-Flight (MALDI-TOF) MS to identify MABS subspecies. Two spectral databases were created by using 40 confirmed MABS strains. Spectra were obtained by using MALDI-TOF MS from strains cultivated on solid (Columbia Blood Agar, CBA) or liquid (MGIT®) media for 1 to 13 days. Each database was divided into a dataset for ML-based pipeline development and a dataset to assess the performance. An in-house programme was developed to identify discriminant peaks specific to each subspecies. The peak-based approach successfully distinguished M. massiliense from the other subspecies for strains grown on CBA. The ML approach achieved 100% accuracy for subspecies identification on CBA, falling to 77.5% on MGIT®. This study validates the usefulness of ML, in particular the Random Forest algorithm, to discriminate MABS subspecies by MALDI-TOF MS. However, identification in MGIT®, a medium largely used in mycobacteriology laboratories, is not yet reliable and should be a development priority.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbial Biotechnology
Microbial Biotechnology Immunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
11.20
自引率
3.50%
发文量
162
审稿时长
1 months
期刊介绍: Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes
期刊最新文献
New insights for the development of efficient DNA vaccines Bacterial Catabolism of Phthalates With Estrogenic Activity Used as Plasticisers in the Manufacture of Plastic Products Combined oxygen and glucose oscillations distinctly change the transcriptional and physiological state of Escherichia coli Design, potential and limitations of conjugation-based antibacterial strategies Microbial biosensors for diagnostics, surveillance and epidemiology: Today's achievements and tomorrow's prospects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1