调制带宽超过千兆赫的毫米波四路 Doherty 功率放大器

IF 4.6 1区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal of Solid-state Circuits Pub Date : 2024-09-11 DOI:10.1109/JSSC.2024.3453321
Xiaohan Zhang;Hao Guo;Taiyun Chi
{"title":"调制带宽超过千兆赫的毫米波四路 Doherty 功率放大器","authors":"Xiaohan Zhang;Hao Guo;Taiyun Chi","doi":"10.1109/JSSC.2024.3453321","DOIUrl":null,"url":null,"abstract":"This article presents the design and analysis of a millimeter-wave (mmWave) four-way Doherty power amplifier (PA), aiming to enhance the PA energy efficiency when amplifying orthogonal frequency-division multiplexing (OFDM)-based 5G new radio (NR) signals with a 10–12-dB peak-to-average power ratio (PAPR). We first introduce a systematic approach to extending a conventional two-way Doherty PA to N ways, followed by a new transformer-based N-way Doherty network synthesis flow. The proposed network synthesis achieves N-way Doherty load modulation using (\n<inline-formula> <tex-math>$N-1$ </tex-math></inline-formula>\n) transformers, one fewer transformer and thus lower loss than conventional designs. In addition, it enables the desired impedance transformation from \n<inline-formula> <tex-math>$R_{\\text {ANT}}$ </tex-math></inline-formula>\n to \n<inline-formula> <tex-math>$R_{\\text {OPT}}$ </tex-math></inline-formula>\n and effectively absorbs the parasitic capacitance of the power cells. Along with the Doherty network, we also introduce a high-speed adaptive biasing circuit, addressing the modulation bandwidth bottleneck in prior Doherty PA demonstrations. As proof of concept, a four-way Doherty PA prototype is implemented in the 47-GHz 5G band (band n262) using the GlobalFoundries 45-nm CMOS silicon-on-insulator (SOI) process. It achieves 24.0-dBm saturated power (\n<inline-formula> <tex-math>$P_{\\text {SAT}}$ </tex-math></inline-formula>\n), 23.7-dBm output 1-dB compression point (\n<inline-formula> <tex-math>$P_{1\\,\\text {dB}}$ </tex-math></inline-formula>\n), 26.8% peak power-added efficiency (\n<inline-formula> <tex-math>$\\text {PAE}_{\\text {PEAK}}$ </tex-math></inline-formula>\n), 26.3% PAE at \n<inline-formula> <tex-math>$P_{1\\,\\text {dB}}$ </tex-math></inline-formula>\n (\n<inline-formula> <tex-math>$\\text {PAE}_{1\\,\\text {dB}}$ </tex-math></inline-formula>\n), 21.7% PAE at 6-dB back-off (\n<inline-formula> <tex-math>$\\text {PAE}_{6\\,\\text {dB}}$ </tex-math></inline-formula>\n), and 13.1% PAE at 12-dB back-off (\n<inline-formula> <tex-math>$\\text {PAE}_{12\\,\\text {dB}}$ </tex-math></inline-formula>\n), demonstrating state-of-the-art performance. In the modulation tests, the PA achieves 14.1-dBm average output power (\n<inline-formula> <tex-math>$P_{\\text {avg}}$ </tex-math></inline-formula>\n) and 13.7% average efficiency (\n<inline-formula> <tex-math>$\\text {PAE}_{\\text {avg}}$ </tex-math></inline-formula>\n) when amplifying a 2000-MHz 5G NR 64-QAM OFDM signal. To the best of our knowledge, this is the first silicon PA demonstration of 2000-MHz channel modulation bandwidth for 5G NR OFDM along with back-off efficiency enhancement up to 12-dB back-off.","PeriodicalId":13129,"journal":{"name":"IEEE Journal of Solid-state Circuits","volume":"59 12","pages":"3898-3914"},"PeriodicalIF":4.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Millimeter-Wave Four-Way Doherty Power Amplifier With Over-GHz Modulation Bandwidth\",\"authors\":\"Xiaohan Zhang;Hao Guo;Taiyun Chi\",\"doi\":\"10.1109/JSSC.2024.3453321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents the design and analysis of a millimeter-wave (mmWave) four-way Doherty power amplifier (PA), aiming to enhance the PA energy efficiency when amplifying orthogonal frequency-division multiplexing (OFDM)-based 5G new radio (NR) signals with a 10–12-dB peak-to-average power ratio (PAPR). We first introduce a systematic approach to extending a conventional two-way Doherty PA to N ways, followed by a new transformer-based N-way Doherty network synthesis flow. The proposed network synthesis achieves N-way Doherty load modulation using (\\n<inline-formula> <tex-math>$N-1$ </tex-math></inline-formula>\\n) transformers, one fewer transformer and thus lower loss than conventional designs. In addition, it enables the desired impedance transformation from \\n<inline-formula> <tex-math>$R_{\\\\text {ANT}}$ </tex-math></inline-formula>\\n to \\n<inline-formula> <tex-math>$R_{\\\\text {OPT}}$ </tex-math></inline-formula>\\n and effectively absorbs the parasitic capacitance of the power cells. Along with the Doherty network, we also introduce a high-speed adaptive biasing circuit, addressing the modulation bandwidth bottleneck in prior Doherty PA demonstrations. As proof of concept, a four-way Doherty PA prototype is implemented in the 47-GHz 5G band (band n262) using the GlobalFoundries 45-nm CMOS silicon-on-insulator (SOI) process. It achieves 24.0-dBm saturated power (\\n<inline-formula> <tex-math>$P_{\\\\text {SAT}}$ </tex-math></inline-formula>\\n), 23.7-dBm output 1-dB compression point (\\n<inline-formula> <tex-math>$P_{1\\\\,\\\\text {dB}}$ </tex-math></inline-formula>\\n), 26.8% peak power-added efficiency (\\n<inline-formula> <tex-math>$\\\\text {PAE}_{\\\\text {PEAK}}$ </tex-math></inline-formula>\\n), 26.3% PAE at \\n<inline-formula> <tex-math>$P_{1\\\\,\\\\text {dB}}$ </tex-math></inline-formula>\\n (\\n<inline-formula> <tex-math>$\\\\text {PAE}_{1\\\\,\\\\text {dB}}$ </tex-math></inline-formula>\\n), 21.7% PAE at 6-dB back-off (\\n<inline-formula> <tex-math>$\\\\text {PAE}_{6\\\\,\\\\text {dB}}$ </tex-math></inline-formula>\\n), and 13.1% PAE at 12-dB back-off (\\n<inline-formula> <tex-math>$\\\\text {PAE}_{12\\\\,\\\\text {dB}}$ </tex-math></inline-formula>\\n), demonstrating state-of-the-art performance. In the modulation tests, the PA achieves 14.1-dBm average output power (\\n<inline-formula> <tex-math>$P_{\\\\text {avg}}$ </tex-math></inline-formula>\\n) and 13.7% average efficiency (\\n<inline-formula> <tex-math>$\\\\text {PAE}_{\\\\text {avg}}$ </tex-math></inline-formula>\\n) when amplifying a 2000-MHz 5G NR 64-QAM OFDM signal. To the best of our knowledge, this is the first silicon PA demonstration of 2000-MHz channel modulation bandwidth for 5G NR OFDM along with back-off efficiency enhancement up to 12-dB back-off.\",\"PeriodicalId\":13129,\"journal\":{\"name\":\"IEEE Journal of Solid-state Circuits\",\"volume\":\"59 12\",\"pages\":\"3898-3914\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Solid-state Circuits\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10675497/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Solid-state Circuits","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10675497/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了毫米波(mmWave)四路 Doherty 功率放大器(PA)的设计和分析,旨在提高功率放大器在放大基于正交频分复用(OFDM)的 5G 新无线电(NR)信号时的能效,该信号的峰均功率比(PAPR)为 10-12dB。我们首先介绍了将传统双路 Doherty 功率放大器扩展到 N 路的系统方法,然后介绍了基于变压器的新型 N 路 Doherty 网络合成流程。建议的网络合成使用 ( $N-1$ ) 个变压器实现 N 路 Doherty 负载调制,比传统设计少了一个变压器,因此损耗更低。此外,它还实现了从 $R_{text {ANT}}$ 到 $R_{text {OPT}}$ 的阻抗变换,并有效吸收了功率单元的寄生电容。除了 Doherty 网络,我们还引入了高速自适应偏置电路,以解决之前 Doherty PA 演示中的调制带宽瓶颈。作为概念验证,我们采用 GlobalFoundries 45 纳米 CMOS 硅绝缘体 (SOI) 工艺,在 47-GHz 5G 频段(频段 n262)上实现了一个四路 Doherty PA 原型。它实现了 24.0-dBm 饱和功率($P_{text {SAT}}$)、23.7-dBm 输出 1-dB 压缩点($P_{1\,\text {dB}}$)、26.8% 峰值功率附加效率($\text {PAE}_{text {PEAK}}$)、26.在 $P_{1\\text {dB}}$ 时的 PAE 为 3%($\text {PAE}_{1\\text {dB}}$ ),在 6 分贝衰减时的 PAE 为 21.7%($\text {PAE}_{6\\\text {dB}}$ ),在 12 分贝衰减时的 PAE 为 13.1%($\text {PAE}_{12\\\text {dB}}$ ),显示了最先进的性能。在调制测试中,当放大 2000-MHz 5G NR 64-QAM OFDM 信号时,功率放大器实现了 14.1-dBm 的平均输出功率($P_{\text {avg}}$)和 13.7% 的平均效率($\text {PAE}_{\text {avg}}$)。据我们所知,这是首个用于 5G NR OFDM 的 2000-MHz 信道调制带宽硅功率放大器演示,同时还将后向效率提升至 12 分贝后向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Millimeter-Wave Four-Way Doherty Power Amplifier With Over-GHz Modulation Bandwidth
This article presents the design and analysis of a millimeter-wave (mmWave) four-way Doherty power amplifier (PA), aiming to enhance the PA energy efficiency when amplifying orthogonal frequency-division multiplexing (OFDM)-based 5G new radio (NR) signals with a 10–12-dB peak-to-average power ratio (PAPR). We first introduce a systematic approach to extending a conventional two-way Doherty PA to N ways, followed by a new transformer-based N-way Doherty network synthesis flow. The proposed network synthesis achieves N-way Doherty load modulation using ( $N-1$ ) transformers, one fewer transformer and thus lower loss than conventional designs. In addition, it enables the desired impedance transformation from $R_{\text {ANT}}$ to $R_{\text {OPT}}$ and effectively absorbs the parasitic capacitance of the power cells. Along with the Doherty network, we also introduce a high-speed adaptive biasing circuit, addressing the modulation bandwidth bottleneck in prior Doherty PA demonstrations. As proof of concept, a four-way Doherty PA prototype is implemented in the 47-GHz 5G band (band n262) using the GlobalFoundries 45-nm CMOS silicon-on-insulator (SOI) process. It achieves 24.0-dBm saturated power ( $P_{\text {SAT}}$ ), 23.7-dBm output 1-dB compression point ( $P_{1\,\text {dB}}$ ), 26.8% peak power-added efficiency ( $\text {PAE}_{\text {PEAK}}$ ), 26.3% PAE at $P_{1\,\text {dB}}$ ( $\text {PAE}_{1\,\text {dB}}$ ), 21.7% PAE at 6-dB back-off ( $\text {PAE}_{6\,\text {dB}}$ ), and 13.1% PAE at 12-dB back-off ( $\text {PAE}_{12\,\text {dB}}$ ), demonstrating state-of-the-art performance. In the modulation tests, the PA achieves 14.1-dBm average output power ( $P_{\text {avg}}$ ) and 13.7% average efficiency ( $\text {PAE}_{\text {avg}}$ ) when amplifying a 2000-MHz 5G NR 64-QAM OFDM signal. To the best of our knowledge, this is the first silicon PA demonstration of 2000-MHz channel modulation bandwidth for 5G NR OFDM along with back-off efficiency enhancement up to 12-dB back-off.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Journal of Solid-state Circuits
IEEE Journal of Solid-state Circuits 工程技术-工程:电子与电气
CiteScore
11.00
自引率
20.40%
发文量
351
审稿时长
3-6 weeks
期刊介绍: The IEEE Journal of Solid-State Circuits publishes papers each month in the broad area of solid-state circuits with particular emphasis on transistor-level design of integrated circuits. It also provides coverage of topics such as circuits modeling, technology, systems design, layout, and testing that relate directly to IC design. Integrated circuits and VLSI are of principal interest; material related to discrete circuit design is seldom published. Experimental verification is strongly encouraged.
期刊最新文献
Modular DR-and CMR-Boosted Artifact-Resilient EEG Headset With Distributed Pulse-Based Feature Extraction and Neuro-Inspired Boosted-SVM Classifier Table of Contents Table of Contents IEEE Journal of Solid-State Circuits Publication Information Guest Editorial Introduction to the Special Section on the 2024 IEEE International Solid-State Circuits Conference (ISSCC)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1