Yanmo Hu;Kai Wu;J. Andrew Zhang;Weibo Deng;Y. Jay Guo
{"title":"ISAC 系统中基于 CSI 比率的双静态多普勒传感的性能界限与优化","authors":"Yanmo Hu;Kai Wu;J. Andrew Zhang;Weibo Deng;Y. Jay Guo","doi":"10.1109/TWC.2024.3453902","DOIUrl":null,"url":null,"abstract":"Bi-static sensing is crucial for exploring the potential of networked sensing capabilities in integrated sensing and communications (ISAC). However, it suffers from the challenging clock asynchronism issue. Channel state information (CSI) ratio-based sensing is an effective means to address the issue. Its performance bounds, particular for Doppler sensing, have not been fully understood yet. This work endeavors to fill the research gap. Focusing on a single dynamic path in high-SNR scenarios, we derive the closed-form Cramér-Rao bounds (CRB). Then, through analyzing the mutual interference between dynamic and static paths, we simplify the CRB results by deriving close approximations, further unveiling new insights of the impact of numerous physical parameters on Doppler sensing. Moreover, utilizing the new CRB and analyses, we propose novel waveform optimization strategies for noise- and interference-limited sensing scenarios, which are also empowered by closed-form and efficient solutions. Extensive simulation results are provided to validate the preciseness of the derived CRB results and analyses, with the aid of the maximum-likelihood estimator. The results also demonstrate the substantial enhanced Doppler sensing accuracy and the sensing capabilities for low-speed target achieved by the proposed waveform design.","PeriodicalId":13431,"journal":{"name":"IEEE Transactions on Wireless Communications","volume":"23 11","pages":"17461-17477"},"PeriodicalIF":8.9000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Bounds and Optimization for CSI-Ratio-Based Bi-Static Doppler Sensing in ISAC Systems\",\"authors\":\"Yanmo Hu;Kai Wu;J. Andrew Zhang;Weibo Deng;Y. Jay Guo\",\"doi\":\"10.1109/TWC.2024.3453902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bi-static sensing is crucial for exploring the potential of networked sensing capabilities in integrated sensing and communications (ISAC). However, it suffers from the challenging clock asynchronism issue. Channel state information (CSI) ratio-based sensing is an effective means to address the issue. Its performance bounds, particular for Doppler sensing, have not been fully understood yet. This work endeavors to fill the research gap. Focusing on a single dynamic path in high-SNR scenarios, we derive the closed-form Cramér-Rao bounds (CRB). Then, through analyzing the mutual interference between dynamic and static paths, we simplify the CRB results by deriving close approximations, further unveiling new insights of the impact of numerous physical parameters on Doppler sensing. Moreover, utilizing the new CRB and analyses, we propose novel waveform optimization strategies for noise- and interference-limited sensing scenarios, which are also empowered by closed-form and efficient solutions. Extensive simulation results are provided to validate the preciseness of the derived CRB results and analyses, with the aid of the maximum-likelihood estimator. The results also demonstrate the substantial enhanced Doppler sensing accuracy and the sensing capabilities for low-speed target achieved by the proposed waveform design.\",\"PeriodicalId\":13431,\"journal\":{\"name\":\"IEEE Transactions on Wireless Communications\",\"volume\":\"23 11\",\"pages\":\"17461-17477\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Wireless Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10678871/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Wireless Communications","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10678871/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Performance Bounds and Optimization for CSI-Ratio-Based Bi-Static Doppler Sensing in ISAC Systems
Bi-static sensing is crucial for exploring the potential of networked sensing capabilities in integrated sensing and communications (ISAC). However, it suffers from the challenging clock asynchronism issue. Channel state information (CSI) ratio-based sensing is an effective means to address the issue. Its performance bounds, particular for Doppler sensing, have not been fully understood yet. This work endeavors to fill the research gap. Focusing on a single dynamic path in high-SNR scenarios, we derive the closed-form Cramér-Rao bounds (CRB). Then, through analyzing the mutual interference between dynamic and static paths, we simplify the CRB results by deriving close approximations, further unveiling new insights of the impact of numerous physical parameters on Doppler sensing. Moreover, utilizing the new CRB and analyses, we propose novel waveform optimization strategies for noise- and interference-limited sensing scenarios, which are also empowered by closed-form and efficient solutions. Extensive simulation results are provided to validate the preciseness of the derived CRB results and analyses, with the aid of the maximum-likelihood estimator. The results also demonstrate the substantial enhanced Doppler sensing accuracy and the sensing capabilities for low-speed target achieved by the proposed waveform design.
期刊介绍:
The IEEE Transactions on Wireless Communications is a prestigious publication that showcases cutting-edge advancements in wireless communications. It welcomes both theoretical and practical contributions in various areas. The scope of the Transactions encompasses a wide range of topics, including modulation and coding, detection and estimation, propagation and channel characterization, and diversity techniques. The journal also emphasizes the physical and link layer communication aspects of network architectures and protocols.
The journal is open to papers on specific topics or non-traditional topics related to specific application areas. This includes simulation tools and methodologies, orthogonal frequency division multiplexing, MIMO systems, and wireless over optical technologies.
Overall, the IEEE Transactions on Wireless Communications serves as a platform for high-quality manuscripts that push the boundaries of wireless communications and contribute to advancements in the field.