在同一地球静止平台上对高光谱红外探测仪和高级成像仪进行协同观测得出的云清除辐射率

IF 7.5 1区 地球科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Geoscience and Remote Sensing Pub Date : 2024-09-11 DOI:10.1109/TGRS.2024.3458093
Xinya Gong;Zhenglong Li;Jun Li;Ruoying Yin;Wei Han;Lin Chen;Di Di
{"title":"在同一地球静止平台上对高光谱红外探测仪和高级成像仪进行协同观测得出的云清除辐射率","authors":"Xinya Gong;Zhenglong Li;Jun Li;Ruoying Yin;Wei Han;Lin Chen;Di Di","doi":"10.1109/TGRS.2024.3458093","DOIUrl":null,"url":null,"abstract":"The Geostationary Interferometric Infrared Sounder (GIIRS) onboard China’s Fengyun-4A (FY-4A) geostationary (GEO) meteorological satellite provides high-spectral-resolution infrared (IR) observations for targeted observing areas with high temporal resolution. Due to the high uncertainties in radiative transfer modeling of cloudy radiances, it is challenging to take full advantage of the thermodynamic information from GIIRS in all-sky conditions. The Advanced Geostationary Radiation Imager (AGRI) onboard the same platform provides a variety of cloud products with high spatial resolution. A bias-corrected optimal cloud-clearing (BCOCC) approach is introduced to generate GIIRS cloud-cleared radiances (CCRs) with the help of AGRI-collocated clear radiances (CLRs). The bias correction (BC) scheme is based on the inter-comparisons between GIIRS and AGRI for each field-of-view (FOV) and different scene temperatures. The BC method ensures the radiometric consistency between GIIRS and AGRI. Evaluations of GIIRS CCRs show that the mean biases are 0.09, −0.06, and 0.06 K when compared with the three AGRI IR bands, B12, B13, and B14. In addition, BCOCC significantly increases the data yields of successful CCRs by three times that of the optimal cloud-clearing (OCC) approach without BC. For 15 days from September 16–30, 2021, around 37% more GIIRS partially cloudy footprints than clear sky are cloud cleared successfully. The CCRs can be assimilated as CLRs in numerical weather prediction (NWP) models without worrying about the cloud impact. This study provides evidence of the importance of placing an advanced hyperspectral IR sounder and imager onboard the same GEO platform for better quantitative applications.","PeriodicalId":13213,"journal":{"name":"IEEE Transactions on Geoscience and Remote Sensing","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cloud-Cleared Radiances From Collocated Observations of Hyperspectral IR Sounder and Advanced Imager Onboard the Same Geostationary Platform\",\"authors\":\"Xinya Gong;Zhenglong Li;Jun Li;Ruoying Yin;Wei Han;Lin Chen;Di Di\",\"doi\":\"10.1109/TGRS.2024.3458093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Geostationary Interferometric Infrared Sounder (GIIRS) onboard China’s Fengyun-4A (FY-4A) geostationary (GEO) meteorological satellite provides high-spectral-resolution infrared (IR) observations for targeted observing areas with high temporal resolution. Due to the high uncertainties in radiative transfer modeling of cloudy radiances, it is challenging to take full advantage of the thermodynamic information from GIIRS in all-sky conditions. The Advanced Geostationary Radiation Imager (AGRI) onboard the same platform provides a variety of cloud products with high spatial resolution. A bias-corrected optimal cloud-clearing (BCOCC) approach is introduced to generate GIIRS cloud-cleared radiances (CCRs) with the help of AGRI-collocated clear radiances (CLRs). The bias correction (BC) scheme is based on the inter-comparisons between GIIRS and AGRI for each field-of-view (FOV) and different scene temperatures. The BC method ensures the radiometric consistency between GIIRS and AGRI. Evaluations of GIIRS CCRs show that the mean biases are 0.09, −0.06, and 0.06 K when compared with the three AGRI IR bands, B12, B13, and B14. In addition, BCOCC significantly increases the data yields of successful CCRs by three times that of the optimal cloud-clearing (OCC) approach without BC. For 15 days from September 16–30, 2021, around 37% more GIIRS partially cloudy footprints than clear sky are cloud cleared successfully. The CCRs can be assimilated as CLRs in numerical weather prediction (NWP) models without worrying about the cloud impact. This study provides evidence of the importance of placing an advanced hyperspectral IR sounder and imager onboard the same GEO platform for better quantitative applications.\",\"PeriodicalId\":13213,\"journal\":{\"name\":\"IEEE Transactions on Geoscience and Remote Sensing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Geoscience and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10677513/\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Geoscience and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10677513/","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

中国风云四号 A(FY-4A)地球静止气象卫星上搭载的地球静止干涉红外探测器(GIIRS)为目标观测区域提供了高时间分辨率的高光谱分辨率红外观测数据。由于多云辐射的辐射传递建模存在很大的不确定性,在全天空条件下充分利用 GIIRS 提供的热力学信息具有挑战性。同一平台上的高级地球静止辐射成像仪(AGRI)提供了多种高空间分辨率的云产品。在 AGRI-定位清晰辐射(CLRs)的帮助下,引入了一种偏差校正优化云清除(BCOCC)方法来生成 GIIRS 云清除辐射(CCRs)。偏差校正(BC)方案基于 GIIRS 和 AGRI 对每个视场(FOV)和不同场景温度的相互比较。BC 方法可确保 GIIRS 和 AGRI 之间辐射测量的一致性。对 GIIRS CCR 的评估表明,与 AGRI 的三个红外波段 B12、B13 和 B14 相比,平均偏差分别为 0.09、-0.06 和 0.06 K。此外,BCOCC 使成功 CCR 的数据产量大幅提高,是不使用 BC 的最优清云 (OCC) 方法的三倍。在 2021 年 9 月 16 日至 30 日的 15 天内,成功清除云层的 GIIRS 部分多云足迹比晴空多出约 37%。在数值天气预报(NWP)模式中,CCR 可被同化为 CLR,而无需担心云的影响。这项研究证明了在同一个地球同步轨道平台上安装先进的高光谱红外探测仪和成像仪以实现更好的定量应用的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cloud-Cleared Radiances From Collocated Observations of Hyperspectral IR Sounder and Advanced Imager Onboard the Same Geostationary Platform
The Geostationary Interferometric Infrared Sounder (GIIRS) onboard China’s Fengyun-4A (FY-4A) geostationary (GEO) meteorological satellite provides high-spectral-resolution infrared (IR) observations for targeted observing areas with high temporal resolution. Due to the high uncertainties in radiative transfer modeling of cloudy radiances, it is challenging to take full advantage of the thermodynamic information from GIIRS in all-sky conditions. The Advanced Geostationary Radiation Imager (AGRI) onboard the same platform provides a variety of cloud products with high spatial resolution. A bias-corrected optimal cloud-clearing (BCOCC) approach is introduced to generate GIIRS cloud-cleared radiances (CCRs) with the help of AGRI-collocated clear radiances (CLRs). The bias correction (BC) scheme is based on the inter-comparisons between GIIRS and AGRI for each field-of-view (FOV) and different scene temperatures. The BC method ensures the radiometric consistency between GIIRS and AGRI. Evaluations of GIIRS CCRs show that the mean biases are 0.09, −0.06, and 0.06 K when compared with the three AGRI IR bands, B12, B13, and B14. In addition, BCOCC significantly increases the data yields of successful CCRs by three times that of the optimal cloud-clearing (OCC) approach without BC. For 15 days from September 16–30, 2021, around 37% more GIIRS partially cloudy footprints than clear sky are cloud cleared successfully. The CCRs can be assimilated as CLRs in numerical weather prediction (NWP) models without worrying about the cloud impact. This study provides evidence of the importance of placing an advanced hyperspectral IR sounder and imager onboard the same GEO platform for better quantitative applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Geoscience and Remote Sensing
IEEE Transactions on Geoscience and Remote Sensing 工程技术-地球化学与地球物理
CiteScore
11.50
自引率
28.00%
发文量
1912
审稿时长
4.0 months
期刊介绍: IEEE Transactions on Geoscience and Remote Sensing (TGRS) is a monthly publication that focuses on the theory, concepts, and techniques of science and engineering as applied to sensing the land, oceans, atmosphere, and space; and the processing, interpretation, and dissemination of this information.
期刊最新文献
Remote sensing images destriping via nonconvex regularization and fast regional decomposition An Enhanced Global Feature-Guided Network Based on Multiple Filtering Noise Reduction for Remote Sensing Image Compression SHBGAN: Hybrid Bilateral Attention GAN for Seismic Image Super-Resolution Reconstruction FDBANet: A Fusion Frequency Domain Denoising and Multi-Scale Boundary Attention Network for Sonar Image Semantic Segmentation Remote-Sensing Image Scene Classification via Graph Template Enhancement and Supplementation Network with Dual-Teacher Knowledge Distillation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1