Bo Liu, Xianli Zhang, Yuanyuan Zhou, Haiping Liu, Zhenkun Wang, Yuting Fu, Qiongdan Gao, Xiang Cheng, Qingyuan Sun, Zhenyu Ju
{"title":"USP4 调节核糖体生物发生和蛋白质合成,促进造血干细胞再生和白血病进展","authors":"Bo Liu, Xianli Zhang, Yuanyuan Zhou, Haiping Liu, Zhenkun Wang, Yuting Fu, Qiongdan Gao, Xiang Cheng, Qingyuan Sun, Zhenyu Ju","doi":"10.1038/s41375-024-02338-z","DOIUrl":null,"url":null,"abstract":"Enhanced ribosome biogenesis and protein synthesis are required for cell proliferation. During hematopoietic regeneration, hematopoietic stem cells (HSCs) proliferate rapidly to replenish the hematopoietic system. How HSCs respond and regulate ribosome biogenesis and protein synthesis during regeneration remains unclear. Here, we analyzed the expression of a series of ubiquitin-specific-proteases (USPs) during HSC regeneration. We found USP4 expression is significantly increased in proliferating HSCs. Further functional and mechanistic investigations revealed a crucial regulatory function of USP4 in HSC regeneration and leukemia progression by modulating ribosome biogenesis and protein synthesis. USP4 deubiquitinates and stabilizes PES1 to facilitate ribosome biogenesis and protein synthesis in proliferative HSCs and leukemic cells. Usp4 deletion significantly decreases protein synthesis, proliferation and reconstitution capacity of HSCs. Usp4 inhibition suppresses ribosome biogenesis and proliferation of leukemic cells, and prolongs the survival of AML (Acute myeloid leukemia) mice. These findings provide a new insight into the response mechanism of ribosome biogenesis and protein synthesis in HSCs, and their contribution to leukemia progression.","PeriodicalId":18109,"journal":{"name":"Leukemia","volume":"38 11","pages":"2466-2478"},"PeriodicalIF":12.8000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41375-024-02338-z.pdf","citationCount":"0","resultStr":"{\"title\":\"USP4 regulates ribosome biogenesis and protein synthesis for hematopoietic stem cell regeneration and leukemia progression\",\"authors\":\"Bo Liu, Xianli Zhang, Yuanyuan Zhou, Haiping Liu, Zhenkun Wang, Yuting Fu, Qiongdan Gao, Xiang Cheng, Qingyuan Sun, Zhenyu Ju\",\"doi\":\"10.1038/s41375-024-02338-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Enhanced ribosome biogenesis and protein synthesis are required for cell proliferation. During hematopoietic regeneration, hematopoietic stem cells (HSCs) proliferate rapidly to replenish the hematopoietic system. How HSCs respond and regulate ribosome biogenesis and protein synthesis during regeneration remains unclear. Here, we analyzed the expression of a series of ubiquitin-specific-proteases (USPs) during HSC regeneration. We found USP4 expression is significantly increased in proliferating HSCs. Further functional and mechanistic investigations revealed a crucial regulatory function of USP4 in HSC regeneration and leukemia progression by modulating ribosome biogenesis and protein synthesis. USP4 deubiquitinates and stabilizes PES1 to facilitate ribosome biogenesis and protein synthesis in proliferative HSCs and leukemic cells. Usp4 deletion significantly decreases protein synthesis, proliferation and reconstitution capacity of HSCs. Usp4 inhibition suppresses ribosome biogenesis and proliferation of leukemic cells, and prolongs the survival of AML (Acute myeloid leukemia) mice. These findings provide a new insight into the response mechanism of ribosome biogenesis and protein synthesis in HSCs, and their contribution to leukemia progression.\",\"PeriodicalId\":18109,\"journal\":{\"name\":\"Leukemia\",\"volume\":\"38 11\",\"pages\":\"2466-2478\"},\"PeriodicalIF\":12.8000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41375-024-02338-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Leukemia\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41375-024-02338-z\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Leukemia","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41375-024-02338-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
USP4 regulates ribosome biogenesis and protein synthesis for hematopoietic stem cell regeneration and leukemia progression
Enhanced ribosome biogenesis and protein synthesis are required for cell proliferation. During hematopoietic regeneration, hematopoietic stem cells (HSCs) proliferate rapidly to replenish the hematopoietic system. How HSCs respond and regulate ribosome biogenesis and protein synthesis during regeneration remains unclear. Here, we analyzed the expression of a series of ubiquitin-specific-proteases (USPs) during HSC regeneration. We found USP4 expression is significantly increased in proliferating HSCs. Further functional and mechanistic investigations revealed a crucial regulatory function of USP4 in HSC regeneration and leukemia progression by modulating ribosome biogenesis and protein synthesis. USP4 deubiquitinates and stabilizes PES1 to facilitate ribosome biogenesis and protein synthesis in proliferative HSCs and leukemic cells. Usp4 deletion significantly decreases protein synthesis, proliferation and reconstitution capacity of HSCs. Usp4 inhibition suppresses ribosome biogenesis and proliferation of leukemic cells, and prolongs the survival of AML (Acute myeloid leukemia) mice. These findings provide a new insight into the response mechanism of ribosome biogenesis and protein synthesis in HSCs, and their contribution to leukemia progression.
期刊介绍:
Title: Leukemia
Journal Overview:
Publishes high-quality, peer-reviewed research
Covers all aspects of research and treatment of leukemia and allied diseases
Includes studies of normal hemopoiesis due to comparative relevance
Topics of Interest:
Oncogenes
Growth factors
Stem cells
Leukemia genomics
Cell cycle
Signal transduction
Molecular targets for therapy
And more
Content Types:
Original research articles
Reviews
Letters
Correspondence
Comments elaborating on significant advances and covering topical issues