估计指数-雷利分布的应力-强度可靠性

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL ACS Applied Energy Materials Pub Date : 2024-09-10 DOI:10.1016/j.matcom.2024.09.005
M.S. Kotb , M.A. Al Omari
{"title":"估计指数-雷利分布的应力-强度可靠性","authors":"M.S. Kotb ,&nbsp;M.A. Al Omari","doi":"10.1016/j.matcom.2024.09.005","DOIUrl":null,"url":null,"abstract":"<div><p>In this current paper, we consider the problem of estimating the stress–strength parameter <span><math><mrow><mi>ψ</mi><mo>=</mo><mi>P</mi><mrow><mo>(</mo><mi>X</mi><mo>&lt;</mo><mi>Y</mi><mo>)</mo></mrow></mrow></math></span>. This is done by using Bayesian and non-Bayesian approaches when <span><math><mi>X</mi></math></span> and <span><math><mi>Y</mi></math></span> are independent random variables from two exponential-Rayleigh distributions with different shape parameters but the same scale parameter. Maximum likelihood and Bayes estimators are used to estimate and construct the asymptotic confidence interval and credible interval of <span><math><mi>ψ</mi></math></span>. Finally, an intensive simulation study is performed to compare the proposed methods and analyze a real data set for illustrative purposes.</p></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of the stress–strength reliability for the exponential-Rayleigh distribution\",\"authors\":\"M.S. Kotb ,&nbsp;M.A. Al Omari\",\"doi\":\"10.1016/j.matcom.2024.09.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this current paper, we consider the problem of estimating the stress–strength parameter <span><math><mrow><mi>ψ</mi><mo>=</mo><mi>P</mi><mrow><mo>(</mo><mi>X</mi><mo>&lt;</mo><mi>Y</mi><mo>)</mo></mrow></mrow></math></span>. This is done by using Bayesian and non-Bayesian approaches when <span><math><mi>X</mi></math></span> and <span><math><mi>Y</mi></math></span> are independent random variables from two exponential-Rayleigh distributions with different shape parameters but the same scale parameter. Maximum likelihood and Bayes estimators are used to estimate and construct the asymptotic confidence interval and credible interval of <span><math><mi>ψ</mi></math></span>. Finally, an intensive simulation study is performed to compare the proposed methods and analyze a real data set for illustrative purposes.</p></div>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378475424003604\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424003604","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了应力强度参数 ψ=P(X<Y) 的估算问题。当 X 和 Y 是来自两个指数-雷利分布的独立随机变量时,采用贝叶斯和非贝叶斯方法进行估算,这两个分布的形状参数不同,但尺度参数相同。最大似然法和贝叶斯估计法用于估计和构建 ψ 的渐近置信区间和可信区间。最后,进行了深入的模拟研究,以比较所提出的方法,并分析了一组真实数据,以作说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimation of the stress–strength reliability for the exponential-Rayleigh distribution

In this current paper, we consider the problem of estimating the stress–strength parameter ψ=P(X<Y). This is done by using Bayesian and non-Bayesian approaches when X and Y are independent random variables from two exponential-Rayleigh distributions with different shape parameters but the same scale parameter. Maximum likelihood and Bayes estimators are used to estimate and construct the asymptotic confidence interval and credible interval of ψ. Finally, an intensive simulation study is performed to compare the proposed methods and analyze a real data set for illustrative purposes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
期刊最新文献
Red ginseng polysaccharide promotes ferroptosis in gastric cancer cells by inhibiting PI3K/Akt pathway through down-regulation of AQP3. Diagnostic value of 18F-PSMA-1007 PET/CT for predicting the pathological grade of prostate cancer. Correction. Hotspot areas of tetanus-unprotected births and its associated factors in Ethiopia: Spatial analysis of EDHS data. WYC-209 inhibited GC malignant progression by down-regulating WNT4 through RARα.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1