{"title":"估计指数-雷利分布的应力-强度可靠性","authors":"M.S. Kotb , M.A. Al Omari","doi":"10.1016/j.matcom.2024.09.005","DOIUrl":null,"url":null,"abstract":"<div><p>In this current paper, we consider the problem of estimating the stress–strength parameter <span><math><mrow><mi>ψ</mi><mo>=</mo><mi>P</mi><mrow><mo>(</mo><mi>X</mi><mo><</mo><mi>Y</mi><mo>)</mo></mrow></mrow></math></span>. This is done by using Bayesian and non-Bayesian approaches when <span><math><mi>X</mi></math></span> and <span><math><mi>Y</mi></math></span> are independent random variables from two exponential-Rayleigh distributions with different shape parameters but the same scale parameter. Maximum likelihood and Bayes estimators are used to estimate and construct the asymptotic confidence interval and credible interval of <span><math><mi>ψ</mi></math></span>. Finally, an intensive simulation study is performed to compare the proposed methods and analyze a real data set for illustrative purposes.</p></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of the stress–strength reliability for the exponential-Rayleigh distribution\",\"authors\":\"M.S. Kotb , M.A. Al Omari\",\"doi\":\"10.1016/j.matcom.2024.09.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this current paper, we consider the problem of estimating the stress–strength parameter <span><math><mrow><mi>ψ</mi><mo>=</mo><mi>P</mi><mrow><mo>(</mo><mi>X</mi><mo><</mo><mi>Y</mi><mo>)</mo></mrow></mrow></math></span>. This is done by using Bayesian and non-Bayesian approaches when <span><math><mi>X</mi></math></span> and <span><math><mi>Y</mi></math></span> are independent random variables from two exponential-Rayleigh distributions with different shape parameters but the same scale parameter. Maximum likelihood and Bayes estimators are used to estimate and construct the asymptotic confidence interval and credible interval of <span><math><mi>ψ</mi></math></span>. Finally, an intensive simulation study is performed to compare the proposed methods and analyze a real data set for illustrative purposes.</p></div>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378475424003604\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424003604","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们考虑了应力强度参数 ψ=P(X<Y) 的估算问题。当 X 和 Y 是来自两个指数-雷利分布的独立随机变量时,采用贝叶斯和非贝叶斯方法进行估算,这两个分布的形状参数不同,但尺度参数相同。最大似然法和贝叶斯估计法用于估计和构建 ψ 的渐近置信区间和可信区间。最后,进行了深入的模拟研究,以比较所提出的方法,并分析了一组真实数据,以作说明。
Estimation of the stress–strength reliability for the exponential-Rayleigh distribution
In this current paper, we consider the problem of estimating the stress–strength parameter . This is done by using Bayesian and non-Bayesian approaches when and are independent random variables from two exponential-Rayleigh distributions with different shape parameters but the same scale parameter. Maximum likelihood and Bayes estimators are used to estimate and construct the asymptotic confidence interval and credible interval of . Finally, an intensive simulation study is performed to compare the proposed methods and analyze a real data set for illustrative purposes.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.