真实和保护隐私的广义线性模型

IF 0.8 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS Information and Computation Pub Date : 2024-09-12 DOI:10.1016/j.ic.2024.105225
Yuan Qiu , Jinyan Liu , Di Wang
{"title":"真实和保护隐私的广义线性模型","authors":"Yuan Qiu ,&nbsp;Jinyan Liu ,&nbsp;Di Wang","doi":"10.1016/j.ic.2024.105225","DOIUrl":null,"url":null,"abstract":"<div><p>This paper explores estimating Generalized Linear Models (GLMs) when agents are strategic and privacy-conscious. We aim to design mechanisms that encourage truthful reporting, protect privacy, and ensure outputs are close to the true parameters. Initially, we address models with sub-Gaussian covariates and heavy-tailed responses with finite fourth moments, proposing a novel private, closed-form estimator. Our mechanism features: (1) <span><math><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span>-joint differential privacy with high probability; (2) <span><math><mi>o</mi><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>n</mi></mrow></mfrac><mo>)</mo></math></span>-approximate Bayes Nash equilibrium for <span><math><mo>(</mo><mn>1</mn><mo>−</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo></math></span>-fraction of agents; (3) <span><math><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span> error in parameter estimation; (4) individual rationality for <span><math><mo>(</mo><mn>1</mn><mo>−</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo></math></span> of agents; (5) <span><math><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span> payment budget. We then extend our approach to linear regression with heavy-tailed data, using an <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-norm shrinkage operator to propose a similar estimator and payment scheme.</p></div>","PeriodicalId":54985,"journal":{"name":"Information and Computation","volume":"301 ","pages":"Article 105225"},"PeriodicalIF":0.8000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Truthful and privacy-preserving generalized linear models\",\"authors\":\"Yuan Qiu ,&nbsp;Jinyan Liu ,&nbsp;Di Wang\",\"doi\":\"10.1016/j.ic.2024.105225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper explores estimating Generalized Linear Models (GLMs) when agents are strategic and privacy-conscious. We aim to design mechanisms that encourage truthful reporting, protect privacy, and ensure outputs are close to the true parameters. Initially, we address models with sub-Gaussian covariates and heavy-tailed responses with finite fourth moments, proposing a novel private, closed-form estimator. Our mechanism features: (1) <span><math><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span>-joint differential privacy with high probability; (2) <span><math><mi>o</mi><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>n</mi></mrow></mfrac><mo>)</mo></math></span>-approximate Bayes Nash equilibrium for <span><math><mo>(</mo><mn>1</mn><mo>−</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo></math></span>-fraction of agents; (3) <span><math><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span> error in parameter estimation; (4) individual rationality for <span><math><mo>(</mo><mn>1</mn><mo>−</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo></math></span> of agents; (5) <span><math><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span> payment budget. We then extend our approach to linear regression with heavy-tailed data, using an <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-norm shrinkage operator to propose a similar estimator and payment scheme.</p></div>\",\"PeriodicalId\":54985,\"journal\":{\"name\":\"Information and Computation\",\"volume\":\"301 \",\"pages\":\"Article 105225\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information and Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0890540124000907\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890540124000907","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了在代理具有策略性和隐私意识的情况下估计广义线性模型(GLM)的问题。我们旨在设计鼓励真实报告、保护隐私并确保输出接近真实参数的机制。首先,我们讨论了具有亚高斯协变量和具有有限第四矩的重尾响应的模型,并提出了一种新颖的私有闭式估计器。我们的机制具有以下特点(1) o(1)-高概率联合差分隐私;(2) (1-o(1))-部分代理人的 o(1n)- 近似贝叶斯纳什均衡;(3) o(1) 参数估计误差;(4) (1-o(1)) 代理人的个体理性;(5) o(1) 支付预算。然后,我们将方法扩展到重尾数据的线性回归,使用 ℓ4 规范收缩算子提出类似的估计和支付方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Truthful and privacy-preserving generalized linear models

This paper explores estimating Generalized Linear Models (GLMs) when agents are strategic and privacy-conscious. We aim to design mechanisms that encourage truthful reporting, protect privacy, and ensure outputs are close to the true parameters. Initially, we address models with sub-Gaussian covariates and heavy-tailed responses with finite fourth moments, proposing a novel private, closed-form estimator. Our mechanism features: (1) o(1)-joint differential privacy with high probability; (2) o(1n)-approximate Bayes Nash equilibrium for (1o(1))-fraction of agents; (3) o(1) error in parameter estimation; (4) individual rationality for (1o(1)) of agents; (5) o(1) payment budget. We then extend our approach to linear regression with heavy-tailed data, using an 4-norm shrinkage operator to propose a similar estimator and payment scheme.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information and Computation
Information and Computation 工程技术-计算机:理论方法
CiteScore
2.30
自引率
0.00%
发文量
119
审稿时长
140 days
期刊介绍: Information and Computation welcomes original papers in all areas of theoretical computer science and computational applications of information theory. Survey articles of exceptional quality will also be considered. Particularly welcome are papers contributing new results in active theoretical areas such as -Biological computation and computational biology- Computational complexity- Computer theorem-proving- Concurrency and distributed process theory- Cryptographic theory- Data base theory- Decision problems in logic- Design and analysis of algorithms- Discrete optimization and mathematical programming- Inductive inference and learning theory- Logic & constraint programming- Program verification & model checking- Probabilistic & Quantum computation- Semantics of programming languages- Symbolic computation, lambda calculus, and rewriting systems- Types and typechecking
期刊最新文献
Editorial Board Editorial Board Asymptotically optimal synthesis of reversible circuits Non-linear communication via graded modal session types Systems of fixpoint equations: Abstraction, games, up-to techniques and local algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1