分析和检测自制爆炸物 TACP

IF 2.2 3区 医学 Q1 MEDICINE, LEGAL Forensic science international Pub Date : 2024-09-06 DOI:10.1016/j.forsciint.2024.112217
{"title":"分析和检测自制爆炸物 TACP","authors":"","doi":"10.1016/j.forsciint.2024.112217","DOIUrl":null,"url":null,"abstract":"<div><p>This paper focuses on tetraamminecopper(II) perchlorate (TACP), a relatively newly used and popular homemade explosive that is insufficiently described in the literature. The compound was analyzed using commonly used forensic laboratory techniques such as FTIR, Raman, XRPD, and DTA. The TACP molecule was labeled with four <sup>15</sup>N atoms on ammonia ligands to assign vibrational modes to the resulting bands. The paper also describes the thermal decomposition of TACP using thermoanalytical methods TGA/MS. The TACP decomposes to the final product CuO in six distinct ranges, releasing N<sub>2</sub>O, NO, HCl, O<sub>2</sub>, H<sub>2</sub>O, and NH<sub>3</sub>. It has been found that TACP is not a stable compound and will decompose spontaneously to ammonia, ammonium perchlorate, and basic copper perchlorate within a few months if exposed to air at room temperature. Residues of precursors have been detected in TACP prepared by four improvised preparation methods published on the Internet. These residues can be used to identify the precursor used in the preparation. The post-blast residues of TACP are of ordinary shape, but the use of TACP as an explosive can be indicated by the presence of a high content of copper and chlorine atoms in post-blast residues. The results of canine detection of TACP indicate that the dog is able to detect TACP, but the dog is likely to focus on the smell of ammonia in the TACP odor.</p></div>","PeriodicalId":12341,"journal":{"name":"Forensic science international","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis and detection of homemade explosive TACP\",\"authors\":\"\",\"doi\":\"10.1016/j.forsciint.2024.112217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper focuses on tetraamminecopper(II) perchlorate (TACP), a relatively newly used and popular homemade explosive that is insufficiently described in the literature. The compound was analyzed using commonly used forensic laboratory techniques such as FTIR, Raman, XRPD, and DTA. The TACP molecule was labeled with four <sup>15</sup>N atoms on ammonia ligands to assign vibrational modes to the resulting bands. The paper also describes the thermal decomposition of TACP using thermoanalytical methods TGA/MS. The TACP decomposes to the final product CuO in six distinct ranges, releasing N<sub>2</sub>O, NO, HCl, O<sub>2</sub>, H<sub>2</sub>O, and NH<sub>3</sub>. It has been found that TACP is not a stable compound and will decompose spontaneously to ammonia, ammonium perchlorate, and basic copper perchlorate within a few months if exposed to air at room temperature. Residues of precursors have been detected in TACP prepared by four improvised preparation methods published on the Internet. These residues can be used to identify the precursor used in the preparation. The post-blast residues of TACP are of ordinary shape, but the use of TACP as an explosive can be indicated by the presence of a high content of copper and chlorine atoms in post-blast residues. The results of canine detection of TACP indicate that the dog is able to detect TACP, but the dog is likely to focus on the smell of ammonia in the TACP odor.</p></div>\",\"PeriodicalId\":12341,\"journal\":{\"name\":\"Forensic science international\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forensic science international\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0379073824002986\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, LEGAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic science international","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0379073824002986","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, LEGAL","Score":null,"Total":0}
引用次数: 0

摘要

本文重点介绍四氨铜(II)高氯酸盐(TACP),这是一种较新使用的流行自制爆炸物,文献中对其描述不足。我们使用常用的傅立叶变换红外光谱(FTIR)、拉曼光谱(Raman)、XRPD 和 DTA 等法医实验室技术对该化合物进行了分析。在 TACP 分子的氨配体上标记了四个 15N 原子,以便为产生的频带分配振动模式。论文还利用热分析方法 TGA/MS 描述了 TACP 的热分解。TACP 在六个不同的范围内分解为最终产物 CuO,释放出 N2O、NO、HCl、O2、H2O 和 NH3。研究发现,TACP 并不是一种稳定的化合物,如果暴露在室温空气中,几个月内就会自发分解成氨、高氯酸铵和碱式高氯酸铜。在互联网上公布的四种简易制备方法制备的 TACP 中检测到了前体残留物。这些残留物可用于识别制备过程中使用的前体。TACP 的爆炸后残留物形状普通,但爆炸后残留物中铜原子和氯原子含量较高,这表明 TACP 被用作爆炸物。警犬探测 TACP 的结果表明,警犬能够探测到 TACP,但警犬很可能只关注 TACP 气味中的氨味。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis and detection of homemade explosive TACP

This paper focuses on tetraamminecopper(II) perchlorate (TACP), a relatively newly used and popular homemade explosive that is insufficiently described in the literature. The compound was analyzed using commonly used forensic laboratory techniques such as FTIR, Raman, XRPD, and DTA. The TACP molecule was labeled with four 15N atoms on ammonia ligands to assign vibrational modes to the resulting bands. The paper also describes the thermal decomposition of TACP using thermoanalytical methods TGA/MS. The TACP decomposes to the final product CuO in six distinct ranges, releasing N2O, NO, HCl, O2, H2O, and NH3. It has been found that TACP is not a stable compound and will decompose spontaneously to ammonia, ammonium perchlorate, and basic copper perchlorate within a few months if exposed to air at room temperature. Residues of precursors have been detected in TACP prepared by four improvised preparation methods published on the Internet. These residues can be used to identify the precursor used in the preparation. The post-blast residues of TACP are of ordinary shape, but the use of TACP as an explosive can be indicated by the presence of a high content of copper and chlorine atoms in post-blast residues. The results of canine detection of TACP indicate that the dog is able to detect TACP, but the dog is likely to focus on the smell of ammonia in the TACP odor.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forensic science international
Forensic science international 医学-医学:法
CiteScore
5.00
自引率
9.10%
发文量
285
审稿时长
49 days
期刊介绍: Forensic Science International is the flagship journal in the prestigious Forensic Science International family, publishing the most innovative, cutting-edge, and influential contributions across the forensic sciences. Fields include: forensic pathology and histochemistry, chemistry, biochemistry and toxicology, biology, serology, odontology, psychiatry, anthropology, digital forensics, the physical sciences, firearms, and document examination, as well as investigations of value to public health in its broadest sense, and the important marginal area where science and medicine interact with the law. The journal publishes: Case Reports Commentaries Letters to the Editor Original Research Papers (Regular Papers) Rapid Communications Review Articles Technical Notes.
期刊最新文献
Sensitivity assessment of the modified ABAcard® HemaTrace® and p30 immunochromatographic test cards Degradation and preservation of nitrites in whole blood Post mortem chiral analysis of MDMA and MDA in human blood and hair The 2 stages of cartridge primer toolmark production and the implied impact of cartridge manufacturing tolerances Letter to Editor regarding article “Ok Google, Start a Fire. IoT devices as witnesses and actors in fire investigations”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1