{"title":"FLiNaK 热物理性质对圆管中对流传热特性的不确定性分析","authors":"Haoyang Li , Qiunan Sun , Ming Ding , Zehua Guo","doi":"10.1016/j.nucengdes.2024.113585","DOIUrl":null,"url":null,"abstract":"<div><p>Molten salts have attracted a spate of quantity of interests in energy and chemistry fields due to their large volumetric capacity, and thermodynamic stability at elevated temperature. However, there are significant uncertainties in the physical properties of molten salts, such as density, specific heat capacity, dynamic viscosity, and thermal conductivity, due to inexperienced measurement techniques and technology. These uncertainties could have certain impact on the evaluation of molten salts heat transfer characteristics. Therefore, an uncertainty analysis is performed regarding FLiNaK thermophysical properties on convective heat transfer characteristics in circular tube. Then, a polynomial chaos expansion (PCE) method is performed to study the uncertainty affecting the heat transfer characteristic. In the process of uncertainty analysis, tensor product quadrature nodes are used to calculate representative sample points and reduce computational costs. Three primary physical properties of molten salt are taken into account as the input parameters. The Sobol composition method is also used to analyze the contributions of each parameter to heat transfer. The results of the uncertainty analysis suggest that the uncertainties in dynamic viscosity, thermal conductivity, and specific heat capacity have a significant impact on the heat transfer of molten salt, contributing to 80 %, 14 %, and 6 % of the total variability, respectively. It also suggests that the polynomial chaos expansion methodology is both novel and reliable when applied to uncertainty analysis of molten salt.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncertainty analysis of FLiNaK thermophysical properties on convective heat transfer characteristics in circular tube\",\"authors\":\"Haoyang Li , Qiunan Sun , Ming Ding , Zehua Guo\",\"doi\":\"10.1016/j.nucengdes.2024.113585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Molten salts have attracted a spate of quantity of interests in energy and chemistry fields due to their large volumetric capacity, and thermodynamic stability at elevated temperature. However, there are significant uncertainties in the physical properties of molten salts, such as density, specific heat capacity, dynamic viscosity, and thermal conductivity, due to inexperienced measurement techniques and technology. These uncertainties could have certain impact on the evaluation of molten salts heat transfer characteristics. Therefore, an uncertainty analysis is performed regarding FLiNaK thermophysical properties on convective heat transfer characteristics in circular tube. Then, a polynomial chaos expansion (PCE) method is performed to study the uncertainty affecting the heat transfer characteristic. In the process of uncertainty analysis, tensor product quadrature nodes are used to calculate representative sample points and reduce computational costs. Three primary physical properties of molten salt are taken into account as the input parameters. The Sobol composition method is also used to analyze the contributions of each parameter to heat transfer. The results of the uncertainty analysis suggest that the uncertainties in dynamic viscosity, thermal conductivity, and specific heat capacity have a significant impact on the heat transfer of molten salt, contributing to 80 %, 14 %, and 6 % of the total variability, respectively. It also suggests that the polynomial chaos expansion methodology is both novel and reliable when applied to uncertainty analysis of molten salt.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002954932400685X\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002954932400685X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Uncertainty analysis of FLiNaK thermophysical properties on convective heat transfer characteristics in circular tube
Molten salts have attracted a spate of quantity of interests in energy and chemistry fields due to their large volumetric capacity, and thermodynamic stability at elevated temperature. However, there are significant uncertainties in the physical properties of molten salts, such as density, specific heat capacity, dynamic viscosity, and thermal conductivity, due to inexperienced measurement techniques and technology. These uncertainties could have certain impact on the evaluation of molten salts heat transfer characteristics. Therefore, an uncertainty analysis is performed regarding FLiNaK thermophysical properties on convective heat transfer characteristics in circular tube. Then, a polynomial chaos expansion (PCE) method is performed to study the uncertainty affecting the heat transfer characteristic. In the process of uncertainty analysis, tensor product quadrature nodes are used to calculate representative sample points and reduce computational costs. Three primary physical properties of molten salt are taken into account as the input parameters. The Sobol composition method is also used to analyze the contributions of each parameter to heat transfer. The results of the uncertainty analysis suggest that the uncertainties in dynamic viscosity, thermal conductivity, and specific heat capacity have a significant impact on the heat transfer of molten salt, contributing to 80 %, 14 %, and 6 % of the total variability, respectively. It also suggests that the polynomial chaos expansion methodology is both novel and reliable when applied to uncertainty analysis of molten salt.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.