通过放大统计各向同性刚度和顺应性 TRF 的相关结构

IF 6.9 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Computer Methods in Applied Mechanics and Engineering Pub Date : 2024-09-12 DOI:10.1016/j.cma.2024.117356
{"title":"通过放大统计各向同性刚度和顺应性 TRF 的相关结构","authors":"","doi":"10.1016/j.cma.2024.117356","DOIUrl":null,"url":null,"abstract":"<div><p>This paper reports a procedure to develop random fields of material properties on a mesoscale level, coarser than the microscale level of heterogeneous material microstructure. Since the anisotropy of properties at the mesoscale level is unavoidable, tensor-valued random fields (TRFs) need to be constructed. The construction satisfies three criteria: (i) the passage from the micro to mesoscale must be conducted according to micromechanics, (ii) any anisotropic properties must be grasped, and (iii) full (spatial) correlation structure must be accounted for. The construction is illustrated in the example of a linear elastic microstructure modeling a planar interpenetrating phase composite (IPC), where each phase is interconnected throughout the microstructure. The most general representation of a statistically homogeneous and isotropic correlation structure of the TRFs of stiffness and compliance is employed. Four material functions of the representation are determined through scale-dependent homogenization, which grasps any auto- and cross-correlations within/among different components of TRFs. The Gaussianity of the TRFs is also assessed with a finding that, overall, the smaller is the mesoscale and the more pronounced is the microstructural randomness, the more non-Gaussian are the mesoscale TRFs.</p></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S004578252400611X/pdfft?md5=2436f10fb5c5e9e91052fa284ca7337d&pid=1-s2.0-S004578252400611X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Correlation structures of statistically isotropic stiffness and compliance TRFs through upscaling\",\"authors\":\"\",\"doi\":\"10.1016/j.cma.2024.117356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper reports a procedure to develop random fields of material properties on a mesoscale level, coarser than the microscale level of heterogeneous material microstructure. Since the anisotropy of properties at the mesoscale level is unavoidable, tensor-valued random fields (TRFs) need to be constructed. The construction satisfies three criteria: (i) the passage from the micro to mesoscale must be conducted according to micromechanics, (ii) any anisotropic properties must be grasped, and (iii) full (spatial) correlation structure must be accounted for. The construction is illustrated in the example of a linear elastic microstructure modeling a planar interpenetrating phase composite (IPC), where each phase is interconnected throughout the microstructure. The most general representation of a statistically homogeneous and isotropic correlation structure of the TRFs of stiffness and compliance is employed. Four material functions of the representation are determined through scale-dependent homogenization, which grasps any auto- and cross-correlations within/among different components of TRFs. The Gaussianity of the TRFs is also assessed with a finding that, overall, the smaller is the mesoscale and the more pronounced is the microstructural randomness, the more non-Gaussian are the mesoscale TRFs.</p></div>\",\"PeriodicalId\":55222,\"journal\":{\"name\":\"Computer Methods in Applied Mechanics and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S004578252400611X/pdfft?md5=2436f10fb5c5e9e91052fa284ca7337d&pid=1-s2.0-S004578252400611X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Applied Mechanics and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S004578252400611X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004578252400611X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文报告了一种在中尺度水平(比异质材料微观结构的微尺度水平更粗糙)上开发材料属性随机场的程序。由于中尺度层面的属性各向异性不可避免,因此需要构建张量值随机场(TRF)。该构造满足三个标准:(i) 从微观到中观尺度的过程必须根据微观力学进行;(ii) 必须掌握各向异性的特性;(iii) 必须考虑到完整的(空间)相关结构。以平面互穿相复合材料(IPC)的线性弹性微结构建模为例,说明了该结构的构造,其中各相在整个微结构中相互连接。我们采用了刚度和顺应性 TRF 的统计均匀性和各向同性相关结构的最一般表示方法。该表示法的四个材料函数是通过与尺度相关的均质化确定的,可以把握 TRFs 不同成分内部/之间的任何自相关和交叉相关。此外,还对 TRF 的高斯性进行了评估,发现总体而言,中尺度越小、微结构随机性越明显,中尺度 TRF 的非高斯性就越强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Correlation structures of statistically isotropic stiffness and compliance TRFs through upscaling

This paper reports a procedure to develop random fields of material properties on a mesoscale level, coarser than the microscale level of heterogeneous material microstructure. Since the anisotropy of properties at the mesoscale level is unavoidable, tensor-valued random fields (TRFs) need to be constructed. The construction satisfies three criteria: (i) the passage from the micro to mesoscale must be conducted according to micromechanics, (ii) any anisotropic properties must be grasped, and (iii) full (spatial) correlation structure must be accounted for. The construction is illustrated in the example of a linear elastic microstructure modeling a planar interpenetrating phase composite (IPC), where each phase is interconnected throughout the microstructure. The most general representation of a statistically homogeneous and isotropic correlation structure of the TRFs of stiffness and compliance is employed. Four material functions of the representation are determined through scale-dependent homogenization, which grasps any auto- and cross-correlations within/among different components of TRFs. The Gaussianity of the TRFs is also assessed with a finding that, overall, the smaller is the mesoscale and the more pronounced is the microstructural randomness, the more non-Gaussian are the mesoscale TRFs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.70
自引率
15.30%
发文量
719
审稿时长
44 days
期刊介绍: Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.
期刊最新文献
Peridynamic modelling of time-dependent behaviour and creep damage in hyper-viscoelastic solids with pre-cracks Modeling pulmonary perfusion and gas exchange in alveolar microstructures Data-driven projection pursuit adaptation of polynomial chaos expansions for dependent high-dimensional parameters A novel global prediction framework for multi-response models in reliability engineering using adaptive sampling and active subspace methods Modeling via peridynamics for damage and failure of hyperelastic composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1