{"title":"中国岩溶断陷盆地内亚热带针叶林中石灰岩基土壤的土壤有机碳沿土壤深度的变化大于页岩基土壤的土壤有机碳沿土壤深度的变化","authors":"","doi":"10.1016/j.catena.2024.108389","DOIUrl":null,"url":null,"abstract":"<div><p>Lithology strongly influences soil microbial traits and edaphic factors and in turn soil organic carbon (SOC) dynamics. However, the effect of lithology on microbial traits, edaphic factors and resulting SOC physical fractions variation along soil depth remains inadequately understood in karst faulted basin of China. This understanding is critical for improving SOC stability. By separating SOC into labile particulate organic carbon (POC) and stable mineral-associated organic carbon (MAOC) over karst limestone and non-karst shale soil in a subtropical coniferous forest, we aimed to assess potential regulatory mechanisms underlying lithology-associated SOC stability variations across soil depth by integrating soil nutrients, mineralogical characteristics, and microbial traits. We found that SOC and its fractions were higher in limestone than in shale soil, which implying vegetation restoration effects on SOC and its fractions partly depending on lithology. Additionally, we found that the effects of soil depth on SOC and its fractions were greater in limestone soils than shale soils, and the ratios of MAOC to SOC (MAOC:SOC) and MAOC to POC (MAOC:POC) show a opposite trend in response to soil depth between two the lithologies. Variation partitioning and random forest analyses revealed that among multiple factors, the variation of SOC stability assessed via MAOC:SOC was mainly explained by microbial traits than soil nutrients and mineral properties. Contrast to soil depth, structural equation modeling analyses showed that lithology was the primary factor controlling the SOC stability when microbial traits, soil nutrients and mineralogical characteristics were controlled as conditional variables. Overall, these results highlight the crucial role of lithology in regulating the SOC stability along soil depth, which improve our understanding and management of soil carbon (C) pool in karst faulted basin of southwest China.</p></div>","PeriodicalId":9801,"journal":{"name":"Catena","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Greater variation of soil organic carbon in limestone- than shale-based soil along soil depth in a subtropical coniferous forest within a karst faulted basin of China\",\"authors\":\"\",\"doi\":\"10.1016/j.catena.2024.108389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Lithology strongly influences soil microbial traits and edaphic factors and in turn soil organic carbon (SOC) dynamics. However, the effect of lithology on microbial traits, edaphic factors and resulting SOC physical fractions variation along soil depth remains inadequately understood in karst faulted basin of China. This understanding is critical for improving SOC stability. By separating SOC into labile particulate organic carbon (POC) and stable mineral-associated organic carbon (MAOC) over karst limestone and non-karst shale soil in a subtropical coniferous forest, we aimed to assess potential regulatory mechanisms underlying lithology-associated SOC stability variations across soil depth by integrating soil nutrients, mineralogical characteristics, and microbial traits. We found that SOC and its fractions were higher in limestone than in shale soil, which implying vegetation restoration effects on SOC and its fractions partly depending on lithology. Additionally, we found that the effects of soil depth on SOC and its fractions were greater in limestone soils than shale soils, and the ratios of MAOC to SOC (MAOC:SOC) and MAOC to POC (MAOC:POC) show a opposite trend in response to soil depth between two the lithologies. Variation partitioning and random forest analyses revealed that among multiple factors, the variation of SOC stability assessed via MAOC:SOC was mainly explained by microbial traits than soil nutrients and mineral properties. Contrast to soil depth, structural equation modeling analyses showed that lithology was the primary factor controlling the SOC stability when microbial traits, soil nutrients and mineralogical characteristics were controlled as conditional variables. Overall, these results highlight the crucial role of lithology in regulating the SOC stability along soil depth, which improve our understanding and management of soil carbon (C) pool in karst faulted basin of southwest China.</p></div>\",\"PeriodicalId\":9801,\"journal\":{\"name\":\"Catena\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catena\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0341816224005861\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catena","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0341816224005861","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Greater variation of soil organic carbon in limestone- than shale-based soil along soil depth in a subtropical coniferous forest within a karst faulted basin of China
Lithology strongly influences soil microbial traits and edaphic factors and in turn soil organic carbon (SOC) dynamics. However, the effect of lithology on microbial traits, edaphic factors and resulting SOC physical fractions variation along soil depth remains inadequately understood in karst faulted basin of China. This understanding is critical for improving SOC stability. By separating SOC into labile particulate organic carbon (POC) and stable mineral-associated organic carbon (MAOC) over karst limestone and non-karst shale soil in a subtropical coniferous forest, we aimed to assess potential regulatory mechanisms underlying lithology-associated SOC stability variations across soil depth by integrating soil nutrients, mineralogical characteristics, and microbial traits. We found that SOC and its fractions were higher in limestone than in shale soil, which implying vegetation restoration effects on SOC and its fractions partly depending on lithology. Additionally, we found that the effects of soil depth on SOC and its fractions were greater in limestone soils than shale soils, and the ratios of MAOC to SOC (MAOC:SOC) and MAOC to POC (MAOC:POC) show a opposite trend in response to soil depth between two the lithologies. Variation partitioning and random forest analyses revealed that among multiple factors, the variation of SOC stability assessed via MAOC:SOC was mainly explained by microbial traits than soil nutrients and mineral properties. Contrast to soil depth, structural equation modeling analyses showed that lithology was the primary factor controlling the SOC stability when microbial traits, soil nutrients and mineralogical characteristics were controlled as conditional variables. Overall, these results highlight the crucial role of lithology in regulating the SOC stability along soil depth, which improve our understanding and management of soil carbon (C) pool in karst faulted basin of southwest China.
期刊介绍:
Catena publishes papers describing original field and laboratory investigations and reviews on geoecology and landscape evolution with emphasis on interdisciplinary aspects of soil science, hydrology and geomorphology. It aims to disseminate new knowledge and foster better understanding of the physical environment, of evolutionary sequences that have resulted in past and current landscapes, and of the natural processes that are likely to determine the fate of our terrestrial environment.
Papers within any one of the above topics are welcome provided they are of sufficiently wide interest and relevance.