碳捕集利用与封存(CCUS)供应链的安全驱动设计:多目标优化方法

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Chemical Engineering Pub Date : 2024-09-08 DOI:10.1016/j.compchemeng.2024.108863
Manar Oqbi , Luc Véchot , Dhabia M. Al-Mohannadi
{"title":"碳捕集利用与封存(CCUS)供应链的安全驱动设计:多目标优化方法","authors":"Manar Oqbi ,&nbsp;Luc Véchot ,&nbsp;Dhabia M. Al-Mohannadi","doi":"10.1016/j.compchemeng.2024.108863","DOIUrl":null,"url":null,"abstract":"<div><p>Carbon capture, utilization, and storage supply chains (CCUS) play a pivotal role in achieving sustainability targets but necessitate meticulous risk identification and mitigation measures. Traditional safety assessments often occur post-design, constraining proactive risk management efforts. Hence, there is a pressing need to optimize safety performance during the design stages. To address this challenge, a framework for evaluating and optimizing CCUS supply chain safety performance using inherent safety index system (ISI) is introduced. Recognizing the trade-offs between total cost, environmental impact reduction, and risk mitigation, our approach considers multi-objective optimization to concurrently address these sustainability objectives and generate a Pareto set of solutions. Utilizing the augmented <span><math><mrow><mi>ε</mi></mrow></math></span>-constraint method, we applied this framework to optimize CCUS networks and develop sustainable designs across three key objectives. The method was applied to a CCUS system that includes various CO<sub>2</sub> utilization pathways to minimize the total annual cost, CO<sub>2</sub> emissions, and safety risks. The resulting Pareto surface illustrates unique network configurations, each representing a distinct trade-off scenario. Through a case study, we optimized a CCUS network to achieve economic, environmental, and safety objectives. The most economically viable design, with a total annual cost of $97 million and a 40 % net carbon reduction, prioritizes CO<sub>2</sub> utilization for value-added products, while limiting CO<sub>2</sub> sequestration. Conversely, safety-focused designs shift utilization towards safer routes, including CO<sub>2</sub> sequestration and algae production. The proposed framework offers a systematic approach to developing sustainable CCUS supply chain designs, balancing economic viability, environmental sustainability, and safety.</p></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"192 ","pages":"Article 108863"},"PeriodicalIF":3.9000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0098135424002813/pdfft?md5=bf08b9ddc902551052bee138fa804d6c&pid=1-s2.0-S0098135424002813-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Safety-driven design of carbon capture utilization and storage (CCUS) supply chains: A multi-objective optimization approach\",\"authors\":\"Manar Oqbi ,&nbsp;Luc Véchot ,&nbsp;Dhabia M. Al-Mohannadi\",\"doi\":\"10.1016/j.compchemeng.2024.108863\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Carbon capture, utilization, and storage supply chains (CCUS) play a pivotal role in achieving sustainability targets but necessitate meticulous risk identification and mitigation measures. Traditional safety assessments often occur post-design, constraining proactive risk management efforts. Hence, there is a pressing need to optimize safety performance during the design stages. To address this challenge, a framework for evaluating and optimizing CCUS supply chain safety performance using inherent safety index system (ISI) is introduced. Recognizing the trade-offs between total cost, environmental impact reduction, and risk mitigation, our approach considers multi-objective optimization to concurrently address these sustainability objectives and generate a Pareto set of solutions. Utilizing the augmented <span><math><mrow><mi>ε</mi></mrow></math></span>-constraint method, we applied this framework to optimize CCUS networks and develop sustainable designs across three key objectives. The method was applied to a CCUS system that includes various CO<sub>2</sub> utilization pathways to minimize the total annual cost, CO<sub>2</sub> emissions, and safety risks. The resulting Pareto surface illustrates unique network configurations, each representing a distinct trade-off scenario. Through a case study, we optimized a CCUS network to achieve economic, environmental, and safety objectives. The most economically viable design, with a total annual cost of $97 million and a 40 % net carbon reduction, prioritizes CO<sub>2</sub> utilization for value-added products, while limiting CO<sub>2</sub> sequestration. Conversely, safety-focused designs shift utilization towards safer routes, including CO<sub>2</sub> sequestration and algae production. The proposed framework offers a systematic approach to developing sustainable CCUS supply chain designs, balancing economic viability, environmental sustainability, and safety.</p></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":\"192 \",\"pages\":\"Article 108863\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0098135424002813/pdfft?md5=bf08b9ddc902551052bee138fa804d6c&pid=1-s2.0-S0098135424002813-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098135424002813\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424002813","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

碳捕集、利用和封存供应链(CCUS)在实现可持续发展目标方面发挥着举足轻重的作用,但必须采取细致的风险识别和缓解措施。传统的安全评估往往发生在设计之后,制约了积极主动的风险管理工作。因此,迫切需要在设计阶段就优化安全性能。为应对这一挑战,本文介绍了一种利用固有安全指标体系(ISI)评估和优化 CCUS 供应链安全性能的框架。认识到总成本、减少环境影响和降低风险之间的权衡,我们的方法考虑了多目标优化,以同时解决这些可持续发展目标,并生成一组帕累托解决方案。利用增强ε-约束方法,我们将该框架应用于优化 CCUS 网络,并在三个关键目标之间开发可持续设计。我们将该方法应用于一个 CCUS 系统,其中包括各种二氧化碳利用途径,以最大限度地降低年度总成本、二氧化碳排放量和安全风险。由此产生的帕累托曲面显示了独特的网络配置,每种配置都代表了不同的权衡方案。通过案例研究,我们优化了 CCUS 网络,以实现经济、环境和安全目标。最经济可行的设计年总成本为 9700 万美元,净碳减排量为 40%,它优先考虑利用二氧化碳生产增值产品,同时限制二氧化碳的封存。相反,以安全为重点的设计则将二氧化碳的利用转向更安全的途径,包括二氧化碳封存和藻类生产。建议的框架为开发可持续的 CCUS 供应链设计提供了一种系统方法,在经济可行性、环境可持续性和安全性之间取得了平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Safety-driven design of carbon capture utilization and storage (CCUS) supply chains: A multi-objective optimization approach

Carbon capture, utilization, and storage supply chains (CCUS) play a pivotal role in achieving sustainability targets but necessitate meticulous risk identification and mitigation measures. Traditional safety assessments often occur post-design, constraining proactive risk management efforts. Hence, there is a pressing need to optimize safety performance during the design stages. To address this challenge, a framework for evaluating and optimizing CCUS supply chain safety performance using inherent safety index system (ISI) is introduced. Recognizing the trade-offs between total cost, environmental impact reduction, and risk mitigation, our approach considers multi-objective optimization to concurrently address these sustainability objectives and generate a Pareto set of solutions. Utilizing the augmented ε-constraint method, we applied this framework to optimize CCUS networks and develop sustainable designs across three key objectives. The method was applied to a CCUS system that includes various CO2 utilization pathways to minimize the total annual cost, CO2 emissions, and safety risks. The resulting Pareto surface illustrates unique network configurations, each representing a distinct trade-off scenario. Through a case study, we optimized a CCUS network to achieve economic, environmental, and safety objectives. The most economically viable design, with a total annual cost of $97 million and a 40 % net carbon reduction, prioritizes CO2 utilization for value-added products, while limiting CO2 sequestration. Conversely, safety-focused designs shift utilization towards safer routes, including CO2 sequestration and algae production. The proposed framework offers a systematic approach to developing sustainable CCUS supply chain designs, balancing economic viability, environmental sustainability, and safety.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
期刊最新文献
The bullwhip effect, market competition and standard deviation ratio in two parallel supply chains CADET-Julia: Efficient and versatile, open-source simulator for batch chromatography in Julia Computer aided formulation design based on molecular dynamics simulation: Detergents with fragrance Model-based real-time optimization in continuous pharmaceutical manufacturing Risk-averse supply chain management via robust reinforcement learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1