{"title":"用于不同过渡形态线弧添加剂制造的 TC4/TC11 钛合金功能梯度材料的微观结构和力学性能研究","authors":"","doi":"10.1016/j.jmapro.2024.09.016","DOIUrl":null,"url":null,"abstract":"<div><p>Functional gradient materials (FGMs) have garnered increasing interest for their potential in material and structural design. Additive manufacturing, as a kind of free manufacturing and near-net shaping technology with in-situ controllability of materials, is the dominant technology for fabricating FGMs. While numerous studies have been conducted on titanium alloy FGMs, there is still a lack of research on the structure and properties of the material with the number of transitional layers. This study employs double-wire arc additive manufacturing to fabricate FGMs composed of TC4 and TC11 alloys. The study examines the utilization of direct and continuous transition forms in conjunction with stress relieving and solution aging heat treatment processes. The composition, grain morphology, microstructure, and mechanical properties of FGMs are analyzed. Results indicate that in samples employing direct transition, higher heat treatment temperatures and durations lead to a more uniform composition and microstructure. Additionally, the interface morphology becomes increasingly indistinct, and transversal elongation at the interface is enhanced by the strain compensation of the two materials. In continuous transitional samples, an increase in the number of transitional layers results in a more uniform microstructure near the interface, leading to a reduction in interface morphology and an enhancement of mechanical properties. The fracture position tends to shift closer to the TC4 side, with both process forms exhibiting ductile fractures. The plasticity of the TC4 part is superior, and the ductile fracture morphology is more pronounced. This study offers a valuable experimental foundation for investigating the direct and continuous transition of titanium alloy FGMs.</p></div>","PeriodicalId":16148,"journal":{"name":"Journal of Manufacturing Processes","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on the microstructure and mechanical properties of functional gradient materials of TC4/TC11 titanium alloys for wire arc additive manufacturing with different transitional forms\",\"authors\":\"\",\"doi\":\"10.1016/j.jmapro.2024.09.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Functional gradient materials (FGMs) have garnered increasing interest for their potential in material and structural design. Additive manufacturing, as a kind of free manufacturing and near-net shaping technology with in-situ controllability of materials, is the dominant technology for fabricating FGMs. While numerous studies have been conducted on titanium alloy FGMs, there is still a lack of research on the structure and properties of the material with the number of transitional layers. This study employs double-wire arc additive manufacturing to fabricate FGMs composed of TC4 and TC11 alloys. The study examines the utilization of direct and continuous transition forms in conjunction with stress relieving and solution aging heat treatment processes. The composition, grain morphology, microstructure, and mechanical properties of FGMs are analyzed. Results indicate that in samples employing direct transition, higher heat treatment temperatures and durations lead to a more uniform composition and microstructure. Additionally, the interface morphology becomes increasingly indistinct, and transversal elongation at the interface is enhanced by the strain compensation of the two materials. In continuous transitional samples, an increase in the number of transitional layers results in a more uniform microstructure near the interface, leading to a reduction in interface morphology and an enhancement of mechanical properties. The fracture position tends to shift closer to the TC4 side, with both process forms exhibiting ductile fractures. The plasticity of the TC4 part is superior, and the ductile fracture morphology is more pronounced. This study offers a valuable experimental foundation for investigating the direct and continuous transition of titanium alloy FGMs.</p></div>\",\"PeriodicalId\":16148,\"journal\":{\"name\":\"Journal of Manufacturing Processes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Manufacturing Processes\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1526612524009265\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Processes","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1526612524009265","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Research on the microstructure and mechanical properties of functional gradient materials of TC4/TC11 titanium alloys for wire arc additive manufacturing with different transitional forms
Functional gradient materials (FGMs) have garnered increasing interest for their potential in material and structural design. Additive manufacturing, as a kind of free manufacturing and near-net shaping technology with in-situ controllability of materials, is the dominant technology for fabricating FGMs. While numerous studies have been conducted on titanium alloy FGMs, there is still a lack of research on the structure and properties of the material with the number of transitional layers. This study employs double-wire arc additive manufacturing to fabricate FGMs composed of TC4 and TC11 alloys. The study examines the utilization of direct and continuous transition forms in conjunction with stress relieving and solution aging heat treatment processes. The composition, grain morphology, microstructure, and mechanical properties of FGMs are analyzed. Results indicate that in samples employing direct transition, higher heat treatment temperatures and durations lead to a more uniform composition and microstructure. Additionally, the interface morphology becomes increasingly indistinct, and transversal elongation at the interface is enhanced by the strain compensation of the two materials. In continuous transitional samples, an increase in the number of transitional layers results in a more uniform microstructure near the interface, leading to a reduction in interface morphology and an enhancement of mechanical properties. The fracture position tends to shift closer to the TC4 side, with both process forms exhibiting ductile fractures. The plasticity of the TC4 part is superior, and the ductile fracture morphology is more pronounced. This study offers a valuable experimental foundation for investigating the direct and continuous transition of titanium alloy FGMs.
期刊介绍:
The aim of the Journal of Manufacturing Processes (JMP) is to exchange current and future directions of manufacturing processes research, development and implementation, and to publish archival scholarly literature with a view to advancing state-of-the-art manufacturing processes and encouraging innovation for developing new and efficient processes. The journal will also publish from other research communities for rapid communication of innovative new concepts. Special-topic issues on emerging technologies and invited papers will also be published.