通过优化雷达性能和通信用户服务质量实现雷达-通信联合系统

Christos G. Tsinos;Aakash Arora;Theodoros A. Tsiftsis
{"title":"通过优化雷达性能和通信用户服务质量实现雷达-通信联合系统","authors":"Christos G. Tsinos;Aakash Arora;Theodoros A. Tsiftsis","doi":"10.1109/TRS.2024.3425275","DOIUrl":null,"url":null,"abstract":"In this article, the problem of linear precoding and radar receive beamforming design for joint radar-communication (JRC) systems is studied. A multiple antenna base station (BS) that serves multiple single-antenna user terminals on the downlink is assumed. Furthermore, the BS employs a simultaneous radar function in the form of point-like target detection from the reflected return signals in a signal-dependent interference environment. In this work, we jointly design the JRC linear precoder and the radar receive beamformer, thus aiming to optimize the performance of the radar part while maintaining a desired quality of service (QoS) for the communication one subject to a total transmit power constraint. To that end, we formulate a challenging fractional nonconvex optimization problem via which the optimal precoder and radar receive beamformer are derived. Then, we develop algorithmic solutions based on the majorization–minimization (MM) principle and the semidefinite relaxation (SDR) methodology for the formulated optimization problem. The performance of both the proposed solutions is examined and compared to the one of a system that supports only the radar functionality via numerical results.","PeriodicalId":100645,"journal":{"name":"IEEE Transactions on Radar Systems","volume":"2 ","pages":"778-790"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint Radar-Communication Systems by Optimizing Radar Performance and Quality of Service for Communication Users\",\"authors\":\"Christos G. Tsinos;Aakash Arora;Theodoros A. Tsiftsis\",\"doi\":\"10.1109/TRS.2024.3425275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, the problem of linear precoding and radar receive beamforming design for joint radar-communication (JRC) systems is studied. A multiple antenna base station (BS) that serves multiple single-antenna user terminals on the downlink is assumed. Furthermore, the BS employs a simultaneous radar function in the form of point-like target detection from the reflected return signals in a signal-dependent interference environment. In this work, we jointly design the JRC linear precoder and the radar receive beamformer, thus aiming to optimize the performance of the radar part while maintaining a desired quality of service (QoS) for the communication one subject to a total transmit power constraint. To that end, we formulate a challenging fractional nonconvex optimization problem via which the optimal precoder and radar receive beamformer are derived. Then, we develop algorithmic solutions based on the majorization–minimization (MM) principle and the semidefinite relaxation (SDR) methodology for the formulated optimization problem. The performance of both the proposed solutions is examined and compared to the one of a system that supports only the radar functionality via numerical results.\",\"PeriodicalId\":100645,\"journal\":{\"name\":\"IEEE Transactions on Radar Systems\",\"volume\":\"2 \",\"pages\":\"778-790\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Radar Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10589436/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radar Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10589436/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了联合雷达通信(JRC)系统的线性预编码和雷达接收波束成形设计问题。假设一个多天线基站(BS)在下行链路上为多个单天线用户终端提供服务。此外,BS 还采用了同步雷达功能,即在信号依赖性干扰环境下,从反射回波信号中进行点状目标检测。在这项工作中,我们联合设计了 JRC 线性前置编码器和雷达接收波束形成器,目的是优化雷达部分的性能,同时在总发射功率限制下保持通信部分所需的服务质量 (QoS)。为此,我们提出了一个具有挑战性的分数非凸优化问题,并通过该问题得出了最佳前置编码器和雷达接收波束成形器。然后,我们根据大化-最小化(MM)原理和半无限松弛(SDR)方法,为所提出的优化问题开发了算法解决方案。我们通过数值结果检验了这两种解决方案的性能,并将其与仅支持雷达功能的系统进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Joint Radar-Communication Systems by Optimizing Radar Performance and Quality of Service for Communication Users
In this article, the problem of linear precoding and radar receive beamforming design for joint radar-communication (JRC) systems is studied. A multiple antenna base station (BS) that serves multiple single-antenna user terminals on the downlink is assumed. Furthermore, the BS employs a simultaneous radar function in the form of point-like target detection from the reflected return signals in a signal-dependent interference environment. In this work, we jointly design the JRC linear precoder and the radar receive beamformer, thus aiming to optimize the performance of the radar part while maintaining a desired quality of service (QoS) for the communication one subject to a total transmit power constraint. To that end, we formulate a challenging fractional nonconvex optimization problem via which the optimal precoder and radar receive beamformer are derived. Then, we develop algorithmic solutions based on the majorization–minimization (MM) principle and the semidefinite relaxation (SDR) methodology for the formulated optimization problem. The performance of both the proposed solutions is examined and compared to the one of a system that supports only the radar functionality via numerical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Corrections to “Engineering Constraints and Application Regimes of Quantum Radar” Range–Doppler Resolution Enhancement of Ground-Based Radar by Data Extrapolation Technique Polarization-Agile Jamming Suppression for Dual-Polarized Digital Array Radars Identification and High-Accuracy Range Estimation With Doppler Tags in Radar Applications Stepped-Frequency PMCW Waveforms for Automotive Radar Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1