{"title":"为 MU-MIMO 上行链路估计具有数百条子路径的信道:结构化高张量方法","authors":"Panqi Chen;Lei Cheng","doi":"10.1109/LSP.2024.3453655","DOIUrl":null,"url":null,"abstract":"This letter introduces a structured high-rank tensor approach for estimating sub-6G uplink channels in multi-user multiple-input and multiple-output (MU-MIMO) systems. To tackle the difficulty of channel estimation in sub-6G bands with hundreds of sub-paths, our approach fully exploits the physical structure of channel and establishes the link between sub-6G channel model and a high-rank four-dimensional (4D) tensor Canonical Polyadic Decomposition (CPD) with three factor matrices being Vandermonde-constrained. Accordingly, a stronger uniqueness property is derived in this work. This model supports an efficient one-pass algorithm for estimating sub-path parameters, which ensures plug-in compatibility with the widely-used baseline. Our method performs much better than the state-of-the-art tensor-based techniques on the simulations adhering to the 3GPP-R18 5G protocols.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating Channels With Hundreds of Sub-Paths for MU-MIMO Uplink: A Structured High-Rank Tensor Approach\",\"authors\":\"Panqi Chen;Lei Cheng\",\"doi\":\"10.1109/LSP.2024.3453655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter introduces a structured high-rank tensor approach for estimating sub-6G uplink channels in multi-user multiple-input and multiple-output (MU-MIMO) systems. To tackle the difficulty of channel estimation in sub-6G bands with hundreds of sub-paths, our approach fully exploits the physical structure of channel and establishes the link between sub-6G channel model and a high-rank four-dimensional (4D) tensor Canonical Polyadic Decomposition (CPD) with three factor matrices being Vandermonde-constrained. Accordingly, a stronger uniqueness property is derived in this work. This model supports an efficient one-pass algorithm for estimating sub-path parameters, which ensures plug-in compatibility with the widely-used baseline. Our method performs much better than the state-of-the-art tensor-based techniques on the simulations adhering to the 3GPP-R18 5G protocols.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10663962/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10663962/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Estimating Channels With Hundreds of Sub-Paths for MU-MIMO Uplink: A Structured High-Rank Tensor Approach
This letter introduces a structured high-rank tensor approach for estimating sub-6G uplink channels in multi-user multiple-input and multiple-output (MU-MIMO) systems. To tackle the difficulty of channel estimation in sub-6G bands with hundreds of sub-paths, our approach fully exploits the physical structure of channel and establishes the link between sub-6G channel model and a high-rank four-dimensional (4D) tensor Canonical Polyadic Decomposition (CPD) with three factor matrices being Vandermonde-constrained. Accordingly, a stronger uniqueness property is derived in this work. This model supports an efficient one-pass algorithm for estimating sub-path parameters, which ensures plug-in compatibility with the widely-used baseline. Our method performs much better than the state-of-the-art tensor-based techniques on the simulations adhering to the 3GPP-R18 5G protocols.
期刊介绍:
The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.