缓解单相变压器浪涌电流的磁通匹配方法

IF 3.8 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Power Delivery Pub Date : 2024-09-12 DOI:10.1109/TPWRD.2024.3458804
Amir Aghazadeh;Ehsan Hajipour;Vladimir Terzija;Sadegh Azizi
{"title":"缓解单相变压器浪涌电流的磁通匹配方法","authors":"Amir Aghazadeh;Ehsan Hajipour;Vladimir Terzija;Sadegh Azizi","doi":"10.1109/TPWRD.2024.3458804","DOIUrl":null,"url":null,"abstract":"Inrush current refers to the high-magnitude current drawn by a power transformer upon energization. The severity of inrush current is a function of the instantaneous value of voltage at the energization instant and the transformer's residual flux density. This paper proposes an effective energization method for mitigating the inrush current of single-phase power transformers. The method does not rely on the knowledge of transformer design specifications, but the magnitude of the transformer's excitation current. The reference residual flux density is determined with respect to the limitations of the closing operation of the circuit breaker. The method then adjusts the residual flux density of the core to a value deemed appropriate by injecting controlled current into the transformer's winding. This is followed by identifying an appropriate instant for transformer energization that matches the instantaneous value of the steady-state flux density with the adjusted flux density. To validate the efficiency of the proposed method, over 8,000 simulations are conducted in PSCAD/EMTDC. The method is also implemented on a laboratory-scale testbed and extensively tested to demonstrate its effectiveness and superiority over most recent methods under a wide variety of realistic conditions.","PeriodicalId":13498,"journal":{"name":"IEEE Transactions on Power Delivery","volume":"39 6","pages":"3255-3267"},"PeriodicalIF":3.8000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Flux Matching Method for Mitigating the Inrush Current of Single-Phase Transformers\",\"authors\":\"Amir Aghazadeh;Ehsan Hajipour;Vladimir Terzija;Sadegh Azizi\",\"doi\":\"10.1109/TPWRD.2024.3458804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inrush current refers to the high-magnitude current drawn by a power transformer upon energization. The severity of inrush current is a function of the instantaneous value of voltage at the energization instant and the transformer's residual flux density. This paper proposes an effective energization method for mitigating the inrush current of single-phase power transformers. The method does not rely on the knowledge of transformer design specifications, but the magnitude of the transformer's excitation current. The reference residual flux density is determined with respect to the limitations of the closing operation of the circuit breaker. The method then adjusts the residual flux density of the core to a value deemed appropriate by injecting controlled current into the transformer's winding. This is followed by identifying an appropriate instant for transformer energization that matches the instantaneous value of the steady-state flux density with the adjusted flux density. To validate the efficiency of the proposed method, over 8,000 simulations are conducted in PSCAD/EMTDC. The method is also implemented on a laboratory-scale testbed and extensively tested to demonstrate its effectiveness and superiority over most recent methods under a wide variety of realistic conditions.\",\"PeriodicalId\":13498,\"journal\":{\"name\":\"IEEE Transactions on Power Delivery\",\"volume\":\"39 6\",\"pages\":\"3255-3267\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Power Delivery\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10679728/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Power Delivery","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10679728/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

浪涌电流是指电力变压器在通电时产生的大电流。浪涌电流的严重程度取决于通电瞬间的电压瞬时值和变压器的残余磁通密度。本文提出了一种有效的通电方法来减轻单相电力变压器的浪涌电流。该方法不依赖于变压器设计规范知识,而是依赖于变压器励磁电流的大小。参考残余磁通密度是根据断路器合闸操作的限制确定的。然后,该方法通过向变压器绕组注入受控电流,将铁芯的残余磁通密度调整到认为合适的值。随后,确定变压器通电的适当瞬间,使稳态磁通密度的瞬间值与调整后的磁通密度相匹配。为了验证建议方法的效率,在 PSCAD/EMTDC 中进行了 8000 多次模拟。该方法还在实验室规模的试验平台上实施,并进行了广泛测试,以证明其在各种现实条件下的有效性和优于最新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Flux Matching Method for Mitigating the Inrush Current of Single-Phase Transformers
Inrush current refers to the high-magnitude current drawn by a power transformer upon energization. The severity of inrush current is a function of the instantaneous value of voltage at the energization instant and the transformer's residual flux density. This paper proposes an effective energization method for mitigating the inrush current of single-phase power transformers. The method does not rely on the knowledge of transformer design specifications, but the magnitude of the transformer's excitation current. The reference residual flux density is determined with respect to the limitations of the closing operation of the circuit breaker. The method then adjusts the residual flux density of the core to a value deemed appropriate by injecting controlled current into the transformer's winding. This is followed by identifying an appropriate instant for transformer energization that matches the instantaneous value of the steady-state flux density with the adjusted flux density. To validate the efficiency of the proposed method, over 8,000 simulations are conducted in PSCAD/EMTDC. The method is also implemented on a laboratory-scale testbed and extensively tested to demonstrate its effectiveness and superiority over most recent methods under a wide variety of realistic conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Power Delivery
IEEE Transactions on Power Delivery 工程技术-工程:电子与电气
CiteScore
9.00
自引率
13.60%
发文量
513
审稿时长
6 months
期刊介绍: The scope of the Society embraces planning, research, development, design, application, construction, installation and operation of apparatus, equipment, structures, materials and systems for the safe, reliable and economic generation, transmission, distribution, conversion, measurement and control of electric energy. It includes the developing of engineering standards, the providing of information and instruction to the public and to legislators, as well as technical scientific, literary, educational and other activities that contribute to the electric power discipline or utilize the techniques or products within this discipline.
期刊最新文献
2024 Index IEEE Transactions on Power Delivery Vol. 39 A Mixed-Integer Nonlinear Model to Support the Operation of Distribution Systems with Hidden DERs Virtual Shaft Control of Virtual Synchronous Generator with Nonlinear Stiffness for Power Oscillation Suppression Lifetime Improvement of Liquid-Immersed Power Transformers Based on Novel Nanofluids and Water Scavenger Table of Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1