在空地一体化网络中实现高能效用户关联和功率分配的智能云边协作

Zicun Wang;Lin Zhang;Daquan Feng;Gang Wu;Lin Yang
{"title":"在空地一体化网络中实现高能效用户关联和功率分配的智能云边协作","authors":"Zicun Wang;Lin Zhang;Daquan Feng;Gang Wu;Lin Yang","doi":"10.1109/JSAC.2024.3459089","DOIUrl":null,"url":null,"abstract":"In space-air-ground integrated networks (SAGINs), the global energy efficiency (GEE) is a crucial metric for balancing the network throughput and energy consumption, and the maximization of GEE requires the optimizations of both user association and power allocation. Most existing methods optimize user association and power allocation separately or successively, relying on instantaneous non-local channel state information (CSI) exchanges. Nevertheless, both the separate and successive methods may fail to find the jointly optimal solution, and acquiring the instantaneous non-local CSI across the SAGINs is challenging due to the long communication distances between the access points (APs) and users. To address these issues, we leverage cloud-edge collaborations and propose an online delayed-interaction collaborative-learning independent-decision multi-agent DRL (DICLID-MADRL) algorithm. With the proposed algorithm, each AP can independently select users and configure transmit power with only local information to enhance GEE. Simulation results demonstrate that the proposed algorithm achieves a higher GEE with reduced time complexity compared to the state of the arts.","PeriodicalId":73294,"journal":{"name":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","volume":"42 12","pages":"3659-3673"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent Cloud-Edge Collaborations for Energy-Efficient User Association and Power Allocation in Space-Air-Ground Integrated Networks\",\"authors\":\"Zicun Wang;Lin Zhang;Daquan Feng;Gang Wu;Lin Yang\",\"doi\":\"10.1109/JSAC.2024.3459089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In space-air-ground integrated networks (SAGINs), the global energy efficiency (GEE) is a crucial metric for balancing the network throughput and energy consumption, and the maximization of GEE requires the optimizations of both user association and power allocation. Most existing methods optimize user association and power allocation separately or successively, relying on instantaneous non-local channel state information (CSI) exchanges. Nevertheless, both the separate and successive methods may fail to find the jointly optimal solution, and acquiring the instantaneous non-local CSI across the SAGINs is challenging due to the long communication distances between the access points (APs) and users. To address these issues, we leverage cloud-edge collaborations and propose an online delayed-interaction collaborative-learning independent-decision multi-agent DRL (DICLID-MADRL) algorithm. With the proposed algorithm, each AP can independently select users and configure transmit power with only local information to enhance GEE. Simulation results demonstrate that the proposed algorithm achieves a higher GEE with reduced time complexity compared to the state of the arts.\",\"PeriodicalId\":73294,\"journal\":{\"name\":\"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society\",\"volume\":\"42 12\",\"pages\":\"3659-3673\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10679202/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10679202/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在天空地一体化网络中,全局能源效率(GEE)是平衡网络吞吐量和能耗的关键指标,而全局能源效率的最大化需要用户关联和功率分配的优化。现有方法大多依赖于非本地信道状态信息(CSI)的瞬时交换,分别或先后优化用户关联和功率分配。然而,无论是单独的还是连续的方法都可能无法找到联合最优解,并且由于接入点(ap)和用户之间的通信距离较长,跨SAGINs获取瞬时非本地CSI是具有挑战性的。为了解决这些问题,我们利用云边缘协作并提出了一种在线延迟交互协作学习独立决策多代理DRL (DICLID-MADRL)算法。利用该算法,每个AP可以独立地选择用户,并仅根据本地信息配置发射功率,以增强GEE。仿真结果表明,与现有算法相比,该算法在降低时间复杂度的同时,获得了较高的全局响应速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intelligent Cloud-Edge Collaborations for Energy-Efficient User Association and Power Allocation in Space-Air-Ground Integrated Networks
In space-air-ground integrated networks (SAGINs), the global energy efficiency (GEE) is a crucial metric for balancing the network throughput and energy consumption, and the maximization of GEE requires the optimizations of both user association and power allocation. Most existing methods optimize user association and power allocation separately or successively, relying on instantaneous non-local channel state information (CSI) exchanges. Nevertheless, both the separate and successive methods may fail to find the jointly optimal solution, and acquiring the instantaneous non-local CSI across the SAGINs is challenging due to the long communication distances between the access points (APs) and users. To address these issues, we leverage cloud-edge collaborations and propose an online delayed-interaction collaborative-learning independent-decision multi-agent DRL (DICLID-MADRL) algorithm. With the proposed algorithm, each AP can independently select users and configure transmit power with only local information to enhance GEE. Simulation results demonstrate that the proposed algorithm achieves a higher GEE with reduced time complexity compared to the state of the arts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents IEEE Communications Society Information Corrections to “Coverage Rate Analysis for Integrated Sensing and Communication Networks” IEEE Journal on Selected Areas in Communications Publication Information Guest Editorial: Integrated Ground-Air-Space Wireless Networks for 6G Mobile—Part II
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1