利用扩散模型的分层多代理深度强化学习实现高能效地面-空气-空间车载人群感应

Yinuo Zhao;Chi Harold Liu;Tianjiao Yi;Guozheng Li;Dapeng Wu
{"title":"利用扩散模型的分层多代理深度强化学习实现高能效地面-空气-空间车载人群感应","authors":"Yinuo Zhao;Chi Harold Liu;Tianjiao Yi;Guozheng Li;Dapeng Wu","doi":"10.1109/JSAC.2024.3459039","DOIUrl":null,"url":null,"abstract":"The integrated ground-air-space (GAS) communications system can enhance post-disaster rescue and management efforts when traditional networks fail, by navigating unmanned ground vehicles (UGVs) and unmanned arieal vehicles (UAVs) to collaboratively collect sufficient data from point-of-interests (PoIs) in a timely manner. In this paper, we consider the GAS vehicular crowdsensing (VCS) campaign, where UGVs dispatch and callback UAVs periodically across multiple stops in the workzone, to maximize the total collected amount of data, geographic fairness while minimizing the energy consumption simultaneously. Specifically, we propose an energy-efficient, go-directed hierarchical multi-agent deep reinforcement learning (MADRL) method with discrete diffusion models called “gMADRL-VCS”, to optimize the high-level goal-conditioned navigation policies of UGVs, and the low-level long-term sensing strategies of UAVs. Extensive experimental results on two real-world datasets in Roma, Italy, and Hong Kong SAR, China show that gMADRL-VCS outperforms baselines in terms of energy efficiency, data collection ratio, energy consumption, and UAV-UGV cooperation factor.","PeriodicalId":73294,"journal":{"name":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","volume":"42 12","pages":"3566-3580"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy-Efficient Ground-Air-Space Vehicular Crowdsensing by Hierarchical Multi-Agent Deep Reinforcement Learning With Diffusion Models\",\"authors\":\"Yinuo Zhao;Chi Harold Liu;Tianjiao Yi;Guozheng Li;Dapeng Wu\",\"doi\":\"10.1109/JSAC.2024.3459039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The integrated ground-air-space (GAS) communications system can enhance post-disaster rescue and management efforts when traditional networks fail, by navigating unmanned ground vehicles (UGVs) and unmanned arieal vehicles (UAVs) to collaboratively collect sufficient data from point-of-interests (PoIs) in a timely manner. In this paper, we consider the GAS vehicular crowdsensing (VCS) campaign, where UGVs dispatch and callback UAVs periodically across multiple stops in the workzone, to maximize the total collected amount of data, geographic fairness while minimizing the energy consumption simultaneously. Specifically, we propose an energy-efficient, go-directed hierarchical multi-agent deep reinforcement learning (MADRL) method with discrete diffusion models called “gMADRL-VCS”, to optimize the high-level goal-conditioned navigation policies of UGVs, and the low-level long-term sensing strategies of UAVs. Extensive experimental results on two real-world datasets in Roma, Italy, and Hong Kong SAR, China show that gMADRL-VCS outperforms baselines in terms of energy efficiency, data collection ratio, energy consumption, and UAV-UGV cooperation factor.\",\"PeriodicalId\":73294,\"journal\":{\"name\":\"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society\",\"volume\":\"42 12\",\"pages\":\"3566-3580\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10679184/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10679184/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Energy-Efficient Ground-Air-Space Vehicular Crowdsensing by Hierarchical Multi-Agent Deep Reinforcement Learning With Diffusion Models
The integrated ground-air-space (GAS) communications system can enhance post-disaster rescue and management efforts when traditional networks fail, by navigating unmanned ground vehicles (UGVs) and unmanned arieal vehicles (UAVs) to collaboratively collect sufficient data from point-of-interests (PoIs) in a timely manner. In this paper, we consider the GAS vehicular crowdsensing (VCS) campaign, where UGVs dispatch and callback UAVs periodically across multiple stops in the workzone, to maximize the total collected amount of data, geographic fairness while minimizing the energy consumption simultaneously. Specifically, we propose an energy-efficient, go-directed hierarchical multi-agent deep reinforcement learning (MADRL) method with discrete diffusion models called “gMADRL-VCS”, to optimize the high-level goal-conditioned navigation policies of UGVs, and the low-level long-term sensing strategies of UAVs. Extensive experimental results on two real-world datasets in Roma, Italy, and Hong Kong SAR, China show that gMADRL-VCS outperforms baselines in terms of energy efficiency, data collection ratio, energy consumption, and UAV-UGV cooperation factor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents IEEE Journal on Selected Areas in Communications Publication Information Guest Editorial Integrated Ground-Air-Space Wireless Networks for 6G Mobile—Part I IEEE Communications Society Information IEEE Open Access Publishing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1