{"title":"有裂缝的二维十边形压电准晶体的耦合解","authors":"Xiang Mu, Zhaowei Zhu, Liangliang Zhang, Yang Gao","doi":"10.1007/s10338-024-00517-0","DOIUrl":null,"url":null,"abstract":"<p>With the assistance of Stroh formalism, the general solutions satisfying the basic laws of linear elastic theory are written in complex variable forms. To analyze the fracture behavior of two-dimensional decagonal piezoelectric quasicrystals, an elliptical hole model under different boundary conditions is established. The analytical expressions of generalized stress intensity factors (GSIFs) are obtained, respectively, for four general cases: a Griffith crack with generalized remote uniform loading, arbitrary loading on the crack surface, concentrated loading at any position of the crack surface, and multiple collinear periodic cracks under uniform loading at infinity. Numerical examples are given, and the effects of crack length, loading position, loading condition, and crack period on GSIFs are discussed. The derived analytical solutions of cracks play a significant role in understanding the phonon-phason and electromechanical coupled behavior in quasicrystals, and they also serve as criteria for fracture analysis.</p>","PeriodicalId":50892,"journal":{"name":"Acta Mechanica Solida Sinica","volume":"41 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coupled Solutions for Two-Dimensional Decagonal Piezoelectric Quasicrystals with Cracks\",\"authors\":\"Xiang Mu, Zhaowei Zhu, Liangliang Zhang, Yang Gao\",\"doi\":\"10.1007/s10338-024-00517-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With the assistance of Stroh formalism, the general solutions satisfying the basic laws of linear elastic theory are written in complex variable forms. To analyze the fracture behavior of two-dimensional decagonal piezoelectric quasicrystals, an elliptical hole model under different boundary conditions is established. The analytical expressions of generalized stress intensity factors (GSIFs) are obtained, respectively, for four general cases: a Griffith crack with generalized remote uniform loading, arbitrary loading on the crack surface, concentrated loading at any position of the crack surface, and multiple collinear periodic cracks under uniform loading at infinity. Numerical examples are given, and the effects of crack length, loading position, loading condition, and crack period on GSIFs are discussed. The derived analytical solutions of cracks play a significant role in understanding the phonon-phason and electromechanical coupled behavior in quasicrystals, and they also serve as criteria for fracture analysis.</p>\",\"PeriodicalId\":50892,\"journal\":{\"name\":\"Acta Mechanica Solida Sinica\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica Solida Sinica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10338-024-00517-0\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Solida Sinica","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10338-024-00517-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Coupled Solutions for Two-Dimensional Decagonal Piezoelectric Quasicrystals with Cracks
With the assistance of Stroh formalism, the general solutions satisfying the basic laws of linear elastic theory are written in complex variable forms. To analyze the fracture behavior of two-dimensional decagonal piezoelectric quasicrystals, an elliptical hole model under different boundary conditions is established. The analytical expressions of generalized stress intensity factors (GSIFs) are obtained, respectively, for four general cases: a Griffith crack with generalized remote uniform loading, arbitrary loading on the crack surface, concentrated loading at any position of the crack surface, and multiple collinear periodic cracks under uniform loading at infinity. Numerical examples are given, and the effects of crack length, loading position, loading condition, and crack period on GSIFs are discussed. The derived analytical solutions of cracks play a significant role in understanding the phonon-phason and electromechanical coupled behavior in quasicrystals, and they also serve as criteria for fracture analysis.
期刊介绍:
Acta Mechanica Solida Sinica aims to become the best journal of solid mechanics in China and a worldwide well-known one in the field of mechanics, by providing original, perspective and even breakthrough theories and methods for the research on solid mechanics.
The Journal is devoted to the publication of research papers in English in all fields of solid-state mechanics and its related disciplines in science, technology and engineering, with a balanced coverage on analytical, experimental, numerical and applied investigations. Articles, Short Communications, Discussions on previously published papers, and invitation-based Reviews are published bimonthly. The maximum length of an article is 30 pages, including equations, figures and tables