基于修正耦合应力理论的屈曲分层应变能释放率尺寸依赖性分析

IF 2 3区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Acta Mechanica Solida Sinica Pub Date : 2024-08-29 DOI:10.1007/s10338-024-00520-5
Siyu He, Feixiang Tang, Xiuming Liu, Zhongjie Gao, Fang Dong, Sheng Liu
{"title":"基于修正耦合应力理论的屈曲分层应变能释放率尺寸依赖性分析","authors":"Siyu He, Feixiang Tang, Xiuming Liu, Zhongjie Gao, Fang Dong, Sheng Liu","doi":"10.1007/s10338-024-00520-5","DOIUrl":null,"url":null,"abstract":"<p>In micro-electro-mechanical systems, interface expansion issues are commonly encountered, and due to their small size, they often exist at the micro- or nano-scale. The influence of the micro-structural effect on interface mechanics cannot be ignored. This paper focuses on studying the impact of micro-structural effect on interface crack propagation. Modified couple stress theory (MCST) is used to study the buckling delamination of ultra-thin film-substrate systems. The equivalent elastic modulus (EEM) and equivalent flexural rigidity (EFR) are derived based on MCST. Substituting EEM and EFR into the classical Kirchhoff plate theory, the governing equations of ultra-thin film-substrate system with micro-structural effect can be obtained. The finite element method (FEM) was used to calculate the critical strain energy release rate for crack extension. Differences between the three theoretical approaches of MCST, classical theory (CT), and FEM were compared. The effects of stress ratio <span>\\(\\frac{\\sigma }{{\\sigma_{c} }}\\)</span>, initial crack length, film thickness, and micro-structural effect parameters on crack extension were analyzed. The results show that the FEM calculations coincide with the CT calculations. The stress ratio <span>\\(\\frac{\\sigma }{{\\sigma_{c} }}\\)</span>, initial crack length, film thickness, and micro-structural effect parameters have significantly influence crack extension.</p>","PeriodicalId":50892,"journal":{"name":"Acta Mechanica Solida Sinica","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Size-Dependent Analysis of Strain Energy Release Rate of Buckling Delamination Based on the Modified Couple Stress Theory\",\"authors\":\"Siyu He, Feixiang Tang, Xiuming Liu, Zhongjie Gao, Fang Dong, Sheng Liu\",\"doi\":\"10.1007/s10338-024-00520-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In micro-electro-mechanical systems, interface expansion issues are commonly encountered, and due to their small size, they often exist at the micro- or nano-scale. The influence of the micro-structural effect on interface mechanics cannot be ignored. This paper focuses on studying the impact of micro-structural effect on interface crack propagation. Modified couple stress theory (MCST) is used to study the buckling delamination of ultra-thin film-substrate systems. The equivalent elastic modulus (EEM) and equivalent flexural rigidity (EFR) are derived based on MCST. Substituting EEM and EFR into the classical Kirchhoff plate theory, the governing equations of ultra-thin film-substrate system with micro-structural effect can be obtained. The finite element method (FEM) was used to calculate the critical strain energy release rate for crack extension. Differences between the three theoretical approaches of MCST, classical theory (CT), and FEM were compared. The effects of stress ratio <span>\\\\(\\\\frac{\\\\sigma }{{\\\\sigma_{c} }}\\\\)</span>, initial crack length, film thickness, and micro-structural effect parameters on crack extension were analyzed. The results show that the FEM calculations coincide with the CT calculations. The stress ratio <span>\\\\(\\\\frac{\\\\sigma }{{\\\\sigma_{c} }}\\\\)</span>, initial crack length, film thickness, and micro-structural effect parameters have significantly influence crack extension.</p>\",\"PeriodicalId\":50892,\"journal\":{\"name\":\"Acta Mechanica Solida Sinica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica Solida Sinica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10338-024-00520-5\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Solida Sinica","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10338-024-00520-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在微机电系统中,经常会遇到界面膨胀问题,由于尺寸较小,这些问题往往存在于微米或纳米尺度上。微结构效应对界面力学的影响不容忽视。本文主要研究微观结构效应对界面裂纹扩展的影响。本文采用修正耦合应力理论(MCST)来研究超薄薄膜-基底系统的屈曲分层。等效弹性模量(EEM)和等效弯曲刚度(EFR)是基于 MCST 得出的。将等效弹性模量和等效挠曲刚度代入经典的基尔霍夫板理论,可以得到具有微结构效应的超薄薄膜-基底系统的控制方程。有限元法(FEM)用于计算裂纹扩展的临界应变能释放率。比较了 MCST、经典理论(CT)和 FEM 三种理论方法之间的差异。分析了应力比\({frac\{sigma }{\sigma_{c} }}\) 、初始裂纹长度、薄膜厚度和微结构效应参数对裂纹扩展的影响。结果表明,有限元计算结果与 CT 计算结果相吻合。应力比\(\frac{\sigma }{\sigma_{c} }}\) 、初始裂纹长度、薄膜厚度和微观结构效应参数对裂纹扩展有显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Size-Dependent Analysis of Strain Energy Release Rate of Buckling Delamination Based on the Modified Couple Stress Theory

In micro-electro-mechanical systems, interface expansion issues are commonly encountered, and due to their small size, they often exist at the micro- or nano-scale. The influence of the micro-structural effect on interface mechanics cannot be ignored. This paper focuses on studying the impact of micro-structural effect on interface crack propagation. Modified couple stress theory (MCST) is used to study the buckling delamination of ultra-thin film-substrate systems. The equivalent elastic modulus (EEM) and equivalent flexural rigidity (EFR) are derived based on MCST. Substituting EEM and EFR into the classical Kirchhoff plate theory, the governing equations of ultra-thin film-substrate system with micro-structural effect can be obtained. The finite element method (FEM) was used to calculate the critical strain energy release rate for crack extension. Differences between the three theoretical approaches of MCST, classical theory (CT), and FEM were compared. The effects of stress ratio \(\frac{\sigma }{{\sigma_{c} }}\), initial crack length, film thickness, and micro-structural effect parameters on crack extension were analyzed. The results show that the FEM calculations coincide with the CT calculations. The stress ratio \(\frac{\sigma }{{\sigma_{c} }}\), initial crack length, film thickness, and micro-structural effect parameters have significantly influence crack extension.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Mechanica Solida Sinica
Acta Mechanica Solida Sinica 物理-材料科学:综合
CiteScore
3.80
自引率
9.10%
发文量
1088
审稿时长
9 months
期刊介绍: Acta Mechanica Solida Sinica aims to become the best journal of solid mechanics in China and a worldwide well-known one in the field of mechanics, by providing original, perspective and even breakthrough theories and methods for the research on solid mechanics. The Journal is devoted to the publication of research papers in English in all fields of solid-state mechanics and its related disciplines in science, technology and engineering, with a balanced coverage on analytical, experimental, numerical and applied investigations. Articles, Short Communications, Discussions on previously published papers, and invitation-based Reviews are published bimonthly. The maximum length of an article is 30 pages, including equations, figures and tables
期刊最新文献
Coupling Effects and Resonant Characteristics of Rotating Composite Thin-Walled Beams in Hygrothermal Environments Nonlinear Bending of FG-CNTR Curved Nanobeams in Thermal Environments Coupled Solutions for Two-Dimensional Decagonal Piezoelectric Quasicrystals with Cracks Deep-Learning-Coupled Numerical Optimization Method for Designing Geometric Structure and Insertion-Withdrawal Force of Press-Fit Connector Size-Dependent Analysis of Strain Energy Release Rate of Buckling Delamination Based on the Modified Couple Stress Theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1