以甲烷和氢气为燃料的扁平管状固体氧化物燃料电池的性能和应力分析

IF 2 3区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Acta Mechanica Solida Sinica Pub Date : 2024-08-14 DOI:10.1007/s10338-024-00514-3
Chengrong Yu, Zhiyuan Guo, Zehua Pan, Yexin Zhou, Hongying Zhang, Bin Chen, Peng Tan, Wanbing Guan, Zheng Zhong
{"title":"以甲烷和氢气为燃料的扁平管状固体氧化物燃料电池的性能和应力分析","authors":"Chengrong Yu, Zhiyuan Guo, Zehua Pan, Yexin Zhou, Hongying Zhang, Bin Chen, Peng Tan, Wanbing Guan, Zheng Zhong","doi":"10.1007/s10338-024-00514-3","DOIUrl":null,"url":null,"abstract":"<p>Solid oxide fuel cell (SOFC) is a promising power generation technology with high efficiency and can operate with a wide range of fuels. Although H<sub>2</sub> delivery and storage are still hurdles, natural gas is readily accessible through existing pipeline infrastructure and therefore stands as a viable fuel candidate for SOFC. Owing to the high operating temperature, the methane in natural gas can be directly reformed in the anode of an SOFC. However, mechanical failure remains a critical issue and hinders the prevalence of traditional planar SOFCs. A novel flat-tubular structure with symmetrical double-sided cathodes was previously proposed to improve mechanical durability. In this work, the performance of a methane-fueled SOFC with symmetrical double-sided cathodes is analyzed with a numerical multiphysics model. The distributions of different physical fields in the SOFC are investigated. Special attention is paid to stress analysis, which is closely related to the mechanical stability of an SOFC. Furthermore, the CH<sub>4</sub>-fueled and H<sub>2</sub>-fueled SOFCs are also compared in terms of the distribution of thermal stress. A lower first principal stress is observed for CH<sub>4</sub>-fueled flat-tubular SOFC, demonstrating a reduced probability of mechanical failures and potentially extended lifespan.</p>","PeriodicalId":50892,"journal":{"name":"Acta Mechanica Solida Sinica","volume":"42 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance and Stress Analysis of Flat-Tubular Solid Oxide Fuel Cells Fueled with Methane and Hydrogen\",\"authors\":\"Chengrong Yu, Zhiyuan Guo, Zehua Pan, Yexin Zhou, Hongying Zhang, Bin Chen, Peng Tan, Wanbing Guan, Zheng Zhong\",\"doi\":\"10.1007/s10338-024-00514-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Solid oxide fuel cell (SOFC) is a promising power generation technology with high efficiency and can operate with a wide range of fuels. Although H<sub>2</sub> delivery and storage are still hurdles, natural gas is readily accessible through existing pipeline infrastructure and therefore stands as a viable fuel candidate for SOFC. Owing to the high operating temperature, the methane in natural gas can be directly reformed in the anode of an SOFC. However, mechanical failure remains a critical issue and hinders the prevalence of traditional planar SOFCs. A novel flat-tubular structure with symmetrical double-sided cathodes was previously proposed to improve mechanical durability. In this work, the performance of a methane-fueled SOFC with symmetrical double-sided cathodes is analyzed with a numerical multiphysics model. The distributions of different physical fields in the SOFC are investigated. Special attention is paid to stress analysis, which is closely related to the mechanical stability of an SOFC. Furthermore, the CH<sub>4</sub>-fueled and H<sub>2</sub>-fueled SOFCs are also compared in terms of the distribution of thermal stress. A lower first principal stress is observed for CH<sub>4</sub>-fueled flat-tubular SOFC, demonstrating a reduced probability of mechanical failures and potentially extended lifespan.</p>\",\"PeriodicalId\":50892,\"journal\":{\"name\":\"Acta Mechanica Solida Sinica\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mechanica Solida Sinica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10338-024-00514-3\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Solida Sinica","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10338-024-00514-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

固体氧化物燃料电池(SOFC)是一种前景广阔的发电技术,具有效率高、可使用多种燃料的特点。虽然 H2 的输送和储存仍是障碍,但天然气可通过现有管道基础设施随时获取,因此是 SOFC 的可行候选燃料。由于工作温度较高,天然气中的甲烷可以直接在 SOFC 的阳极中转化。然而,机械故障仍然是一个关键问题,阻碍了传统平面 SOFC 的普及。之前有人提出了一种具有对称双面阴极的新型扁管结构,以提高机械耐久性。在这项研究中,我们利用多物理场数值模型分析了采用对称双面阴极的甲烷燃料 SOFC 的性能。研究了 SOFC 中不同物理场的分布。其中特别关注了应力分析,这与 SOFC 的机械稳定性密切相关。此外,还比较了以 CH4 为燃料和以 H2 为燃料的 SOFC 的热应力分布。在以 CH4 为燃料的扁管 SOFC 中观察到较低的第一主应力,这表明机械故障的概率降低,并有可能延长使用寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance and Stress Analysis of Flat-Tubular Solid Oxide Fuel Cells Fueled with Methane and Hydrogen

Solid oxide fuel cell (SOFC) is a promising power generation technology with high efficiency and can operate with a wide range of fuels. Although H2 delivery and storage are still hurdles, natural gas is readily accessible through existing pipeline infrastructure and therefore stands as a viable fuel candidate for SOFC. Owing to the high operating temperature, the methane in natural gas can be directly reformed in the anode of an SOFC. However, mechanical failure remains a critical issue and hinders the prevalence of traditional planar SOFCs. A novel flat-tubular structure with symmetrical double-sided cathodes was previously proposed to improve mechanical durability. In this work, the performance of a methane-fueled SOFC with symmetrical double-sided cathodes is analyzed with a numerical multiphysics model. The distributions of different physical fields in the SOFC are investigated. Special attention is paid to stress analysis, which is closely related to the mechanical stability of an SOFC. Furthermore, the CH4-fueled and H2-fueled SOFCs are also compared in terms of the distribution of thermal stress. A lower first principal stress is observed for CH4-fueled flat-tubular SOFC, demonstrating a reduced probability of mechanical failures and potentially extended lifespan.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Mechanica Solida Sinica
Acta Mechanica Solida Sinica 物理-材料科学:综合
CiteScore
3.80
自引率
9.10%
发文量
1088
审稿时长
9 months
期刊介绍: Acta Mechanica Solida Sinica aims to become the best journal of solid mechanics in China and a worldwide well-known one in the field of mechanics, by providing original, perspective and even breakthrough theories and methods for the research on solid mechanics. The Journal is devoted to the publication of research papers in English in all fields of solid-state mechanics and its related disciplines in science, technology and engineering, with a balanced coverage on analytical, experimental, numerical and applied investigations. Articles, Short Communications, Discussions on previously published papers, and invitation-based Reviews are published bimonthly. The maximum length of an article is 30 pages, including equations, figures and tables
期刊最新文献
Three-Dimensional Phase-Field Simulation of Stress-Assisted Two-Way Shape Memory Effect and Its Cyclic Degradation of Single-Crystal NiTi Shape Memory Alloy Coupling Effects and Resonant Characteristics of Rotating Composite Thin-Walled Beams in Hygrothermal Environments Nonlinear Bending of FG-CNTR Curved Nanobeams in Thermal Environments Coupled Solutions for Two-Dimensional Decagonal Piezoelectric Quasicrystals with Cracks Deep-Learning-Coupled Numerical Optimization Method for Designing Geometric Structure and Insertion-Withdrawal Force of Press-Fit Connector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1