DREADD 对人类诱导神经干细胞衍生多巴胺能神经元的调节揭示了对帕金森病小鼠模型的治疗效果

IF 7.1 2区 医学 Q1 CELL & TISSUE ENGINEERING Stem Cell Research & Therapy Pub Date : 2024-09-11 DOI:10.1186/s13287-024-03921-y
Xueyao Wang, Deqiang Han, Tianqi Zheng, Jinghong Ma, Zhiguo Chen
{"title":"DREADD 对人类诱导神经干细胞衍生多巴胺能神经元的调节揭示了对帕金森病小鼠模型的治疗效果","authors":"Xueyao Wang, Deqiang Han, Tianqi Zheng, Jinghong Ma, Zhiguo Chen","doi":"10.1186/s13287-024-03921-y","DOIUrl":null,"url":null,"abstract":"Stem cell-based therapy is a promising strategy for treating Parkinson’s disease (PD) characterized by the loss of dopaminergic neurons. Recently, induced neural stem cell-derived dopaminergic precursor cells (iNSC-DAPs) have been emerged as a promising candidate for PD cell therapy because of a lower tumor-formation ability. Designer receptors exclusively activated by designer drugs (DREADDs) are useful tools for examining functional synaptic connections with host neurons. DREADD knock-in human iNSCs to express excitatory hM3Dq and inhibitory hM4Di receptors were engineered by CRISPR. The knock-in iNSCs were differentiated into midbrain dopaminergic precursor cells (DAPs) and transplanted into PD mice. The various behavior test such as the Apomorphine-induced rotation test, Cylinder test, Rotarod test, and Open field test were assessed at 4, 8, or 12 weeks post-transplantation with or without the administration of CNO. Electrophysiology were performed to assess the integrated condition and modulatory function to host neurons. DREADD expressing iNSCs were constructed with normal neural stem cells characteristics, proliferation ability, and differentiation potential into dopaminergic neuorns. DAPs derived from DREADD expressing iNSC showed matched function upon administration of clozapine N-oxide (CNO) in vitro. The results of electrophysiology and behavioral tests of transplanted PD mouse models revealed that the grafts established synaptic connections with downstream host neurons and exhibited excitatory or inhibitory modulation in response to CNO in vivo. iNSC-DAPs are a promising candidate for cell replacement therapy for Parkinson’s disease. Remote DREADD-dependent activation of iNSC-DAP neurons significantly enhanced the beneficial effects on transplanted mice with Parkinson’s disease.","PeriodicalId":21876,"journal":{"name":"Stem Cell Research & Therapy","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modulation of human induced neural stem cell-derived dopaminergic neurons by DREADD reveals therapeutic effects on a mouse model of Parkinson’s disease\",\"authors\":\"Xueyao Wang, Deqiang Han, Tianqi Zheng, Jinghong Ma, Zhiguo Chen\",\"doi\":\"10.1186/s13287-024-03921-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stem cell-based therapy is a promising strategy for treating Parkinson’s disease (PD) characterized by the loss of dopaminergic neurons. Recently, induced neural stem cell-derived dopaminergic precursor cells (iNSC-DAPs) have been emerged as a promising candidate for PD cell therapy because of a lower tumor-formation ability. Designer receptors exclusively activated by designer drugs (DREADDs) are useful tools for examining functional synaptic connections with host neurons. DREADD knock-in human iNSCs to express excitatory hM3Dq and inhibitory hM4Di receptors were engineered by CRISPR. The knock-in iNSCs were differentiated into midbrain dopaminergic precursor cells (DAPs) and transplanted into PD mice. The various behavior test such as the Apomorphine-induced rotation test, Cylinder test, Rotarod test, and Open field test were assessed at 4, 8, or 12 weeks post-transplantation with or without the administration of CNO. Electrophysiology were performed to assess the integrated condition and modulatory function to host neurons. DREADD expressing iNSCs were constructed with normal neural stem cells characteristics, proliferation ability, and differentiation potential into dopaminergic neuorns. DAPs derived from DREADD expressing iNSC showed matched function upon administration of clozapine N-oxide (CNO) in vitro. The results of electrophysiology and behavioral tests of transplanted PD mouse models revealed that the grafts established synaptic connections with downstream host neurons and exhibited excitatory or inhibitory modulation in response to CNO in vivo. iNSC-DAPs are a promising candidate for cell replacement therapy for Parkinson’s disease. Remote DREADD-dependent activation of iNSC-DAP neurons significantly enhanced the beneficial effects on transplanted mice with Parkinson’s disease.\",\"PeriodicalId\":21876,\"journal\":{\"name\":\"Stem Cell Research & Therapy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem Cell Research & Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13287-024-03921-y\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Research & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13287-024-03921-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

干细胞疗法是治疗以多巴胺能神经元缺失为特征的帕金森病(PD)的一种前景广阔的策略。最近,诱导神经干细胞衍生的多巴胺能前体细胞(iNSC-DAPs)因其较低的肿瘤形成能力而成为帕金森病细胞疗法的理想候选者。专门由设计药物激活的设计受体(DREADDs)是研究与宿主神经元功能性突触连接的有用工具。通过CRISPR技术,敲入DREADD的人iNSCs表达兴奋性hM3Dq和抑制性hM4Di受体。将敲入的iNSCs分化成中脑多巴胺能前体细胞(DAPs)并移植到帕金森病小鼠体内。在移植后4周、8周或12周时,评估了各种行为测试,如阿朴吗啡诱导的旋转测试、圆筒测试、旋转测试和开阔地测试。电生理学用于评估宿主神经元的综合状况和调节功能。DREADD表达的iNSCs具有正常神经干细胞的特征、增殖能力和向多巴胺能神经元分化的潜能。由表达 DREADD 的 iNSC 衍生的 DAPs 在体外给予氯氮平 N-氧化物(CNO)后显示出匹配的功能。对移植的帕金森病小鼠模型进行的电生理学和行为学测试结果表明,移植物与下游宿主神经元建立了突触连接,并在体内对CNO表现出兴奋或抑制调节。iNSC-DAP 神经元的远程 DREADD 依赖性激活可显著增强对移植的帕金森病小鼠的有益作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modulation of human induced neural stem cell-derived dopaminergic neurons by DREADD reveals therapeutic effects on a mouse model of Parkinson’s disease
Stem cell-based therapy is a promising strategy for treating Parkinson’s disease (PD) characterized by the loss of dopaminergic neurons. Recently, induced neural stem cell-derived dopaminergic precursor cells (iNSC-DAPs) have been emerged as a promising candidate for PD cell therapy because of a lower tumor-formation ability. Designer receptors exclusively activated by designer drugs (DREADDs) are useful tools for examining functional synaptic connections with host neurons. DREADD knock-in human iNSCs to express excitatory hM3Dq and inhibitory hM4Di receptors were engineered by CRISPR. The knock-in iNSCs were differentiated into midbrain dopaminergic precursor cells (DAPs) and transplanted into PD mice. The various behavior test such as the Apomorphine-induced rotation test, Cylinder test, Rotarod test, and Open field test were assessed at 4, 8, or 12 weeks post-transplantation with or without the administration of CNO. Electrophysiology were performed to assess the integrated condition and modulatory function to host neurons. DREADD expressing iNSCs were constructed with normal neural stem cells characteristics, proliferation ability, and differentiation potential into dopaminergic neuorns. DAPs derived from DREADD expressing iNSC showed matched function upon administration of clozapine N-oxide (CNO) in vitro. The results of electrophysiology and behavioral tests of transplanted PD mouse models revealed that the grafts established synaptic connections with downstream host neurons and exhibited excitatory or inhibitory modulation in response to CNO in vivo. iNSC-DAPs are a promising candidate for cell replacement therapy for Parkinson’s disease. Remote DREADD-dependent activation of iNSC-DAP neurons significantly enhanced the beneficial effects on transplanted mice with Parkinson’s disease.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stem Cell Research & Therapy
Stem Cell Research & Therapy CELL BIOLOGY-MEDICINE, RESEARCH & EXPERIMENTAL
CiteScore
13.20
自引率
8.00%
发文量
525
审稿时长
1 months
期刊介绍: Stem Cell Research & Therapy serves as a leading platform for translational research in stem cell therapies. This international, peer-reviewed journal publishes high-quality open-access research articles, with a focus on basic, translational, and clinical research in stem cell therapeutics and regenerative therapies. Coverage includes animal models and clinical trials. Additionally, the journal offers reviews, viewpoints, commentaries, and reports.
期刊最新文献
Clusterin-carrying extracellular vesicles derived from human umbilical cord mesenchymal stem cells restore the ovarian function of premature ovarian failure mice through activating the PI3K/AKT pathway DVL/GSK3/ISL1 pathway signaling: unraveling the mechanism of SIRT3 in neurogenesis and AD therapy Expandable hESC-derived cardiovascular progenitor cells generate functional cardiac lineage cells for microtissue construction Macrophage extracellular vesicle-packaged miR-23a-3p impairs maintenance and angiogenic capacity of human endothelial progenitor cells in neonatal hyperoxia-induced lung injury Modulation of human induced neural stem cell-derived dopaminergic neurons by DREADD reveals therapeutic effects on a mouse model of Parkinson’s disease
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1