使用时间投影室测量 4.50-5.40 MeV 区 232Th(n, f ) 反应的截面* * 本研究得到国家自然科学基金(12075008)、核数据基础重点实验室(6142A08200103)、广东省基础与应用基础研究基金(2021B1515120027)和北京大学核物理与核技术国家重点实验室(NPT2021KFJ57)的资助。

IF 3.6 2区 物理与天体物理 Q1 PHYSICS, NUCLEAR 中国物理C Pub Date : 2024-10-01 DOI:10.1088/1674-1137/ad5ae6
Haofan Bai, Han Yi, Yankun Sun, Yiwei Hu, Jie Liu, Zepeng Wu, Cong Xia, Wenkai Ren, Wentian Cao, Tieshuan Fan, Guohui Zhang, Ruirui Fan, Yang Li, Wei Jiang, Yonghao Chen, You Lv, Changjun Ning, Weihua Jia, Zhiyong Zhang, Haolei Chen, Zhen Chen, Maoyuan Zhao, Changqing Feng, Shubin Liu
{"title":"使用时间投影室测量 4.50-5.40 MeV 区 232Th(n, f ) 反应的截面* * 本研究得到国家自然科学基金(12075008)、核数据基础重点实验室(6142A08200103)、广东省基础与应用基础研究基金(2021B1515120027)和北京大学核物理与核技术国家重点实验室(NPT2021KFJ57)的资助。","authors":"Haofan Bai, Han Yi, Yankun Sun, Yiwei Hu, Jie Liu, Zepeng Wu, Cong Xia, Wenkai Ren, Wentian Cao, Tieshuan Fan, Guohui Zhang, Ruirui Fan, Yang Li, Wei Jiang, Yonghao Chen, You Lv, Changjun Ning, Weihua Jia, Zhiyong Zhang, Haolei Chen, Zhen Chen, Maoyuan Zhao, Changqing Feng, Shubin Liu","doi":"10.1088/1674-1137/ad5ae6","DOIUrl":null,"url":null,"abstract":"Accurate cross sections of neutron induced fission reactions are required in the design of advanced nuclear systems and the development of fission theory. Time projection chambers (TPCs), with their track reconstruction and particle identification capabilities, are considered the best detectors for high-precision fission cross section measurements. The TPC developed by the back-streaming white neutron source (Back-n) team of the China Spallation Neutron Source (CSNS) was used as the fission fragment detector in measurements. In this study, the cross sections of the <sup>232</sup>Th(<italic toggle=\"yes\">n</italic>, <italic toggle=\"yes\">f</italic>) reaction at five neutron energies in the 4.50−5.40 MeV region were measured. The fission fragments and α particles were well identified using our TPC, which led to a higher detection efficiency of the fission fragments and smaller uncertainty of the measured cross sections. Ours is the first measurement of the <sup>232</sup>Th(<italic toggle=\"yes\">n, f</italic>) reaction using a TPC for the detection of fission fragments. With uncertainties less than 5%, our cross sections are consistent with the data in different evaluation libraries, including JENDL-4.0, ROSFOND-2010, CENDL-3.2, ENDF/B-VIII.0, and BROND-3.1, whose uncertainties can be reduced after future improvement of the measurement.","PeriodicalId":10250,"journal":{"name":"中国物理C","volume":"105 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cross section measurement for the 232Th(n, f ) reaction in the 4.50−5.40 MeV region using a time projection chamber* * This study was financially Supported by the National Natural Science Foundation of China (12075008), the Key Laboratory of Nuclear Data foundation (6142A08200103), the Basic and Applied Basic Research Foundation of Guangdong Province, China (2021B1515120027), and the State Key Laboratory of Nuclear Physics and Technology, Peking University (NPT2021KFJ57)\",\"authors\":\"Haofan Bai, Han Yi, Yankun Sun, Yiwei Hu, Jie Liu, Zepeng Wu, Cong Xia, Wenkai Ren, Wentian Cao, Tieshuan Fan, Guohui Zhang, Ruirui Fan, Yang Li, Wei Jiang, Yonghao Chen, You Lv, Changjun Ning, Weihua Jia, Zhiyong Zhang, Haolei Chen, Zhen Chen, Maoyuan Zhao, Changqing Feng, Shubin Liu\",\"doi\":\"10.1088/1674-1137/ad5ae6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate cross sections of neutron induced fission reactions are required in the design of advanced nuclear systems and the development of fission theory. Time projection chambers (TPCs), with their track reconstruction and particle identification capabilities, are considered the best detectors for high-precision fission cross section measurements. The TPC developed by the back-streaming white neutron source (Back-n) team of the China Spallation Neutron Source (CSNS) was used as the fission fragment detector in measurements. In this study, the cross sections of the <sup>232</sup>Th(<italic toggle=\\\"yes\\\">n</italic>, <italic toggle=\\\"yes\\\">f</italic>) reaction at five neutron energies in the 4.50−5.40 MeV region were measured. The fission fragments and α particles were well identified using our TPC, which led to a higher detection efficiency of the fission fragments and smaller uncertainty of the measured cross sections. Ours is the first measurement of the <sup>232</sup>Th(<italic toggle=\\\"yes\\\">n, f</italic>) reaction using a TPC for the detection of fission fragments. With uncertainties less than 5%, our cross sections are consistent with the data in different evaluation libraries, including JENDL-4.0, ROSFOND-2010, CENDL-3.2, ENDF/B-VIII.0, and BROND-3.1, whose uncertainties can be reduced after future improvement of the measurement.\",\"PeriodicalId\":10250,\"journal\":{\"name\":\"中国物理C\",\"volume\":\"105 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"中国物理C\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1674-1137/ad5ae6\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国物理C","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1674-1137/ad5ae6","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

先进核系统的设计和裂变理论的发展都需要精确的中子诱导裂变反应截面。时间投影室(TPC)具有轨迹重建和粒子识别能力,被认为是高精度裂变截面测量的最佳探测器。中国溅射中子源(CSNS)后流白中子源(Back-n)团队研制的时间投影室被用作裂变碎片探测器。本研究测量了 232Th(n,f)反应在 4.50-5.40 MeV 区域的五个中子能量下的截面。使用我们的 TPC 可以很好地识别裂变碎片和 α 粒子,这使得裂变碎片的探测效率更高,测量截面的不确定性更小。我们是首次使用 TPC 对 232Th(n,f)反应进行裂变碎片探测。在不确定度小于 5%的情况下,我们的横截面与不同评估库中的数据一致,包括 JENDL-4.0、ROSFOND-2010、CENDL-3.2、ENDF/B-VIII.0 和 BROND-3.1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cross section measurement for the 232Th(n, f ) reaction in the 4.50−5.40 MeV region using a time projection chamber* * This study was financially Supported by the National Natural Science Foundation of China (12075008), the Key Laboratory of Nuclear Data foundation (6142A08200103), the Basic and Applied Basic Research Foundation of Guangdong Province, China (2021B1515120027), and the State Key Laboratory of Nuclear Physics and Technology, Peking University (NPT2021KFJ57)
Accurate cross sections of neutron induced fission reactions are required in the design of advanced nuclear systems and the development of fission theory. Time projection chambers (TPCs), with their track reconstruction and particle identification capabilities, are considered the best detectors for high-precision fission cross section measurements. The TPC developed by the back-streaming white neutron source (Back-n) team of the China Spallation Neutron Source (CSNS) was used as the fission fragment detector in measurements. In this study, the cross sections of the 232Th(n, f) reaction at five neutron energies in the 4.50−5.40 MeV region were measured. The fission fragments and α particles were well identified using our TPC, which led to a higher detection efficiency of the fission fragments and smaller uncertainty of the measured cross sections. Ours is the first measurement of the 232Th(n, f) reaction using a TPC for the detection of fission fragments. With uncertainties less than 5%, our cross sections are consistent with the data in different evaluation libraries, including JENDL-4.0, ROSFOND-2010, CENDL-3.2, ENDF/B-VIII.0, and BROND-3.1, whose uncertainties can be reduced after future improvement of the measurement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
中国物理C
中国物理C 物理-物理:核物理
CiteScore
6.50
自引率
8.30%
发文量
8976
审稿时长
1.3 months
期刊介绍: Chinese Physics C covers the latest developments and achievements in the theory, experiment and applications of: Particle physics; Nuclear physics; Particle and nuclear astrophysics; Cosmology; Accelerator physics. The journal publishes original research papers, letters and reviews. The Letters section covers short reports on the latest important scientific results, published as quickly as possible. Such breakthrough research articles are a high priority for publication. The Editorial Board is composed of about fifty distinguished physicists, who are responsible for the review of submitted papers and who ensure the scientific quality of the journal. The journal has been awarded the Chinese Academy of Sciences ‘Excellent Journal’ award multiple times, and is recognized as one of China''s top one hundred key scientific periodicals by the General Administration of News and Publications.
期刊最新文献
CP violation of baryon decays with N π rescatterings* * Supported in part by the Natural Science Foundation of China (12335003), and the Fundamental Research Funds for the Central Universities (lzujbky-2024-oy02, lzujbky-2023-it12) Testing Bell inequality through at CEPC* * Tong Li is Supported by the National Natural Science Foundation of China (12375096, 12035008, 11975129), and "the Fundamental Research Funds for the Central Universities", Nankai University (63196013). Kai Ma was supported by the Natural Science Basic Research Program of Shaanxi Province, China (2023-JC-YB-041) and the Innovation Capability Support Program of Shaanxi Province, China (2021KJXX-47) Probing inelastic signatures of dark matter detection via polarized nucleus* * Supported by the National Natural Science Foundation of China (12275232, 12005180), the Natural Science Foundation of Shandong Province, China (ZR2020QA083) and the Project of Higher Educational Science and Technology Program of Shandong Province, China (2022KJ271) Radiative leptonic decay of heavy quarkonia* * Supported by the National Natural Science Foundation of China (12247119, 12042507) Inner fission barriers of uranium isotopes in the deformed relativistic Hartree-Bogoliubov theory in continuum* * This work was partly supported by the Natural Science Foundation of Henan Province, China (242300421156, 202300410480), the National Natural Science Foundation of China (12141501, U2032141, 11935003), the State Key Laboratory of Nuclear Physics and Technology, Peking University (NPT2023ZX03), the Super Computing Center of Beijing Normal University, and High-performance Computing Platform of Peking University
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1