A. D. Asher, M. D. Filipović, I. Bojičić, R. Z. E. Alsaberi, E. J. Crawford, H. Leverenz
{"title":"小麦哲伦星云中行星状星云的射电连续波发射","authors":"A. D. Asher, M. D. Filipović, I. Bojičić, R. Z. E. Alsaberi, E. J. Crawford, H. Leverenz","doi":"10.1007/s10509-024-04342-2","DOIUrl":null,"url":null,"abstract":"<div><p>We report 11 new radio continuum measurements of established planetary nebulae (PNe) in the Small Magellanic Cloud (SMC) that we observed at 5.5 and 9 GHz with the Australia Telescope Compact Array (ATCA). These new radio detections are PNe with catalogued names: SMP SMC 2, SMP SMC 3, SMP SMC 5, SMP SMC 8, SMP SMC 13, SMP SMC 14, SMP SMC 19, MGPN SMC 8, SMP SMC 22, SMP SMC 26 and SMP SMC 27. We supplement our data with available high-resolution radio observations from MeerKAT and construct the spectral energy distribution (SED) in the radio regime for each PN. We determine the angular diameters of four of the eleven PNe from radio flux density alone using SED modelling, which are compared to the corresponding <i>Hubble Space Telescope</i> (HST) optical diameters. Our results are in good agreement with the optically-derived angular diameters from independent HST observations. We plot our new diameter estimates against a larger sample of Galactic PNe and compare diameters obtained via the SED method to those found in the literature. Our sample diameters, when compared to the Galactic PNe, suggest that the angular diameter measurement methods are comparable independent of the distance.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10509-024-04342-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Radio continuum emission from planetary nebulae in the Small Magellanic Cloud\",\"authors\":\"A. D. Asher, M. D. Filipović, I. Bojičić, R. Z. E. Alsaberi, E. J. Crawford, H. Leverenz\",\"doi\":\"10.1007/s10509-024-04342-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We report 11 new radio continuum measurements of established planetary nebulae (PNe) in the Small Magellanic Cloud (SMC) that we observed at 5.5 and 9 GHz with the Australia Telescope Compact Array (ATCA). These new radio detections are PNe with catalogued names: SMP SMC 2, SMP SMC 3, SMP SMC 5, SMP SMC 8, SMP SMC 13, SMP SMC 14, SMP SMC 19, MGPN SMC 8, SMP SMC 22, SMP SMC 26 and SMP SMC 27. We supplement our data with available high-resolution radio observations from MeerKAT and construct the spectral energy distribution (SED) in the radio regime for each PN. We determine the angular diameters of four of the eleven PNe from radio flux density alone using SED modelling, which are compared to the corresponding <i>Hubble Space Telescope</i> (HST) optical diameters. Our results are in good agreement with the optically-derived angular diameters from independent HST observations. We plot our new diameter estimates against a larger sample of Galactic PNe and compare diameters obtained via the SED method to those found in the literature. Our sample diameters, when compared to the Galactic PNe, suggest that the angular diameter measurement methods are comparable independent of the distance.</p></div>\",\"PeriodicalId\":8644,\"journal\":{\"name\":\"Astrophysics and Space Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10509-024-04342-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrophysics and Space Science\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10509-024-04342-2\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysics and Space Science","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10509-024-04342-2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Radio continuum emission from planetary nebulae in the Small Magellanic Cloud
We report 11 new radio continuum measurements of established planetary nebulae (PNe) in the Small Magellanic Cloud (SMC) that we observed at 5.5 and 9 GHz with the Australia Telescope Compact Array (ATCA). These new radio detections are PNe with catalogued names: SMP SMC 2, SMP SMC 3, SMP SMC 5, SMP SMC 8, SMP SMC 13, SMP SMC 14, SMP SMC 19, MGPN SMC 8, SMP SMC 22, SMP SMC 26 and SMP SMC 27. We supplement our data with available high-resolution radio observations from MeerKAT and construct the spectral energy distribution (SED) in the radio regime for each PN. We determine the angular diameters of four of the eleven PNe from radio flux density alone using SED modelling, which are compared to the corresponding Hubble Space Telescope (HST) optical diameters. Our results are in good agreement with the optically-derived angular diameters from independent HST observations. We plot our new diameter estimates against a larger sample of Galactic PNe and compare diameters obtained via the SED method to those found in the literature. Our sample diameters, when compared to the Galactic PNe, suggest that the angular diameter measurement methods are comparable independent of the distance.
期刊介绍:
Astrophysics and Space Science publishes original contributions and invited reviews covering the entire range of astronomy, astrophysics, astrophysical cosmology, planetary and space science and the astrophysical aspects of astrobiology. This includes both observational and theoretical research, the techniques of astronomical instrumentation and data analysis and astronomical space instrumentation. We particularly welcome papers in the general fields of high-energy astrophysics, astrophysical and astrochemical studies of the interstellar medium including star formation, planetary astrophysics, the formation and evolution of galaxies and the evolution of large scale structure in the Universe. Papers in mathematical physics or in general relativity which do not establish clear astrophysical applications will no longer be considered.
The journal also publishes topically selected special issues in research fields of particular scientific interest. These consist of both invited reviews and original research papers. Conference proceedings will not be considered. All papers published in the journal are subject to thorough and strict peer-reviewing.
Astrophysics and Space Science features short publication times after acceptance and colour printing free of charge.