氮稳定 DLC 涂层:使用随机树和神经网络算法优化性能和沉积参数

IF 1.8 4区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Physical Mesomechanics Pub Date : 2024-08-23 DOI:10.1134/S1029959924040015
A. I. Voropaev, V. I. Kolesnikov, O. V. Kudryakov, V. N. Varavka, I. V. Kolesnikov, M. S. Lifar, S. A. Guda, A. A. Guda, A. V. Sidashov
{"title":"氮稳定 DLC 涂层:使用随机树和神经网络算法优化性能和沉积参数","authors":"A. I. Voropaev,&nbsp;V. I. Kolesnikov,&nbsp;O. V. Kudryakov,&nbsp;V. N. Varavka,&nbsp;I. V. Kolesnikov,&nbsp;M. S. Lifar,&nbsp;S. A. Guda,&nbsp;A. A. Guda,&nbsp;A. V. Sidashov","doi":"10.1134/S1029959924040015","DOIUrl":null,"url":null,"abstract":"<p>This work discusses the predictable control of plasma-assisted physical vapor deposition (PVD) of coatings. The multiple process parameters and the instability of the nonequilibrium ion plasma system create substantial obstacles to the wide industrial application of promising multicomponent functional coatings. Here we propose a solution to this problem, which includes: creation of a database of diamond-like carbon (DLC) coatings to identify a limited set of adjustable process control parameters, determination of how these parameters affect the coating properties, analysis of the revealed effects using statistical methods and neural network algorithms, and use of the results for the predictable tuning of specified coating properties. The object of research is original DLC coatings whose structure is stabilized with nitrogen instead of conventionally used hydrogen. The experimental database of DLC coatings is created based on our previous studies and includes structural, morphological and architectural characteristics of coatings, various types of substrates, sublayers, physical, mechanical and tribological properties, and various combinations of coating deposition parameters. A specific problem is solved to determine the influence of deposition parameters such as chamber pressure <i>P</i>, stabilizer content (% nitrogen), ion flux rate (coil current λ) and deposition time <i>t</i> on hardness <i>H</i> and elastic modulus <i>E</i> of coatings. Based on the results obtained, the deposition parameters are optimized so as to obtain predictable strength values of the formed carbon coating. The optimization procedure is developed using both classical statistical methods and modern algorithms of ridge regression, randomized trees (ExtraTrees), and a fully connected neural network (multilayer perceptron MLP).</p>","PeriodicalId":726,"journal":{"name":"Physical Mesomechanics","volume":"27 4","pages":"355 - 369"},"PeriodicalIF":1.8000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nitrogen-Stabilized DLC Coatings: Optimization of Properties and Deposition Parameters Using Randomized Tree and Neural Network Algorithms\",\"authors\":\"A. I. Voropaev,&nbsp;V. I. Kolesnikov,&nbsp;O. V. Kudryakov,&nbsp;V. N. Varavka,&nbsp;I. V. Kolesnikov,&nbsp;M. S. Lifar,&nbsp;S. A. Guda,&nbsp;A. A. Guda,&nbsp;A. V. Sidashov\",\"doi\":\"10.1134/S1029959924040015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This work discusses the predictable control of plasma-assisted physical vapor deposition (PVD) of coatings. The multiple process parameters and the instability of the nonequilibrium ion plasma system create substantial obstacles to the wide industrial application of promising multicomponent functional coatings. Here we propose a solution to this problem, which includes: creation of a database of diamond-like carbon (DLC) coatings to identify a limited set of adjustable process control parameters, determination of how these parameters affect the coating properties, analysis of the revealed effects using statistical methods and neural network algorithms, and use of the results for the predictable tuning of specified coating properties. The object of research is original DLC coatings whose structure is stabilized with nitrogen instead of conventionally used hydrogen. The experimental database of DLC coatings is created based on our previous studies and includes structural, morphological and architectural characteristics of coatings, various types of substrates, sublayers, physical, mechanical and tribological properties, and various combinations of coating deposition parameters. A specific problem is solved to determine the influence of deposition parameters such as chamber pressure <i>P</i>, stabilizer content (% nitrogen), ion flux rate (coil current λ) and deposition time <i>t</i> on hardness <i>H</i> and elastic modulus <i>E</i> of coatings. Based on the results obtained, the deposition parameters are optimized so as to obtain predictable strength values of the formed carbon coating. The optimization procedure is developed using both classical statistical methods and modern algorithms of ridge regression, randomized trees (ExtraTrees), and a fully connected neural network (multilayer perceptron MLP).</p>\",\"PeriodicalId\":726,\"journal\":{\"name\":\"Physical Mesomechanics\",\"volume\":\"27 4\",\"pages\":\"355 - 369\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Mesomechanics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1029959924040015\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Mesomechanics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1029959924040015","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文讨论了涂层的等离子体辅助物理气相沉积(PVD)的可预测性控制。多工艺参数和非平衡离子等离子体系统的不稳定性给前景广阔的多组分功能涂层的广泛工业应用造成了巨大障碍。在此,我们提出了解决这一问题的方案,其中包括:建立类金刚石碳(DLC)涂层数据库,以确定一组有限的可调工艺控制参数;确定这些参数如何影响涂层特性;使用统计方法和神经网络算法分析所揭示的影响;以及利用结果对特定涂层特性进行可预测的调整。研究对象是原始的 DLC 涂层,其结构用氮气而不是传统的氢气来稳定。DLC 涂层的实验数据库是根据我们以前的研究建立的,其中包括涂层的结构、形态和构造特征,各种类型的基底、底层,物理、机械和摩擦学特性,以及涂层沉积参数的各种组合。本研究解决了一个具体问题,即确定沉积参数(如腔室压力 P、稳定剂含量(氮%)、离子通量率(线圈电流 λ)和沉积时间 t)对涂层硬度 H 和弹性模量 E 的影响。根据获得的结果,对沉积参数进行了优化,以获得可预测的已形成碳涂层的强度值。优化程序的开发既使用了经典统计方法,也使用了脊回归、随机树(ExtraTrees)和全连接神经网络(多层感知器 MLP)等现代算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nitrogen-Stabilized DLC Coatings: Optimization of Properties and Deposition Parameters Using Randomized Tree and Neural Network Algorithms

This work discusses the predictable control of plasma-assisted physical vapor deposition (PVD) of coatings. The multiple process parameters and the instability of the nonequilibrium ion plasma system create substantial obstacles to the wide industrial application of promising multicomponent functional coatings. Here we propose a solution to this problem, which includes: creation of a database of diamond-like carbon (DLC) coatings to identify a limited set of adjustable process control parameters, determination of how these parameters affect the coating properties, analysis of the revealed effects using statistical methods and neural network algorithms, and use of the results for the predictable tuning of specified coating properties. The object of research is original DLC coatings whose structure is stabilized with nitrogen instead of conventionally used hydrogen. The experimental database of DLC coatings is created based on our previous studies and includes structural, morphological and architectural characteristics of coatings, various types of substrates, sublayers, physical, mechanical and tribological properties, and various combinations of coating deposition parameters. A specific problem is solved to determine the influence of deposition parameters such as chamber pressure P, stabilizer content (% nitrogen), ion flux rate (coil current λ) and deposition time t on hardness H and elastic modulus E of coatings. Based on the results obtained, the deposition parameters are optimized so as to obtain predictable strength values of the formed carbon coating. The optimization procedure is developed using both classical statistical methods and modern algorithms of ridge regression, randomized trees (ExtraTrees), and a fully connected neural network (multilayer perceptron MLP).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Mesomechanics
Physical Mesomechanics Materials Science-General Materials Science
CiteScore
3.50
自引率
18.80%
发文量
48
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related in the physical mesomechanics and also solid-state physics, mechanics, materials science, geodynamics, non-destructive testing and in a large number of other fields where the physical mesomechanics may be used extensively. Papers dealing with the processing, characterization, structure and physical properties and computational aspects of the mesomechanics of heterogeneous media, fracture mesomechanics, physical mesomechanics of materials, mesomechanics applications for geodynamics and tectonics, mesomechanics of smart materials and materials for electronics, non-destructive testing are viewed as suitable for publication.
期刊最新文献
Evaluation of the Effective Mechanical Properties of a Particle-Reinforced Polymer Composite with Low-Modulus Inclusions Absorption of Impact and Shear Energy by Crystal Lattices of Mechanically Activated Inorganic Substances: A Review Multiscale Modeling and Computer-Aided Design of Advanced Materials with Hierarchical Structure Microstructural Deformation and Fracture of Reduced Activation Ferritic-Martensitic Steel EK-181 under Different Heat Treatment Conditions Synthesis of Porous Composites Based on Electroexplosive Ti/Al Nanopowder for Bone Implants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1