{"title":"全面考虑温度和应变率变化的两级金属构造模型","authors":"A. I. Shveykin, A. A. Vshivkova, P. V. Trusov","doi":"10.1134/S1029959924040027","DOIUrl":null,"url":null,"abstract":"<p>An important goal of industrial development is to improve the forming and thermomechanical processing technologies, both in order to get the best characteristics of finished products and to reduce energy costs and material consumption. The key step in solving such problems is the correct formulation of a material constitutive model. The temperature and strain rate attained in particular metal forming processes can vary significantly and have a strong influence on the structural evolution of the material and, consequently, on the resulting physical and mechanical properties. However, there are almost no processes in which the temperature and strain rate are constant and equal at all points of the processed product. In this regard, it is relevant to build constitutive models that correctly account for the influence of changing temperature and strain rate on the material response. Based on our previous review, we propose here a modified two-level statistical model that correctly accounts for the temperature and strain rate effects on intragranular dislocation slip and the associated material response. The model parameters are determined for an fcc polycrystal of Al 2024-T351 alloy using literature data on the compression behavior of this alloy at different temperatures and strain rates. A detailed description is given for an algorithm developed to identify the model parameters using data from constant temperature and constant strain rate experiments. The proposed model showed adequate results for loading conditions with changing temperature and strain rate.</p>","PeriodicalId":726,"journal":{"name":"Physical Mesomechanics","volume":"27 4","pages":"370 - 386"},"PeriodicalIF":1.8000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-Level Constitutive Model of Metal with a Comprehensive Account of Temperature and Strain Rate Changes\",\"authors\":\"A. I. Shveykin, A. A. Vshivkova, P. V. Trusov\",\"doi\":\"10.1134/S1029959924040027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An important goal of industrial development is to improve the forming and thermomechanical processing technologies, both in order to get the best characteristics of finished products and to reduce energy costs and material consumption. The key step in solving such problems is the correct formulation of a material constitutive model. The temperature and strain rate attained in particular metal forming processes can vary significantly and have a strong influence on the structural evolution of the material and, consequently, on the resulting physical and mechanical properties. However, there are almost no processes in which the temperature and strain rate are constant and equal at all points of the processed product. In this regard, it is relevant to build constitutive models that correctly account for the influence of changing temperature and strain rate on the material response. Based on our previous review, we propose here a modified two-level statistical model that correctly accounts for the temperature and strain rate effects on intragranular dislocation slip and the associated material response. The model parameters are determined for an fcc polycrystal of Al 2024-T351 alloy using literature data on the compression behavior of this alloy at different temperatures and strain rates. A detailed description is given for an algorithm developed to identify the model parameters using data from constant temperature and constant strain rate experiments. The proposed model showed adequate results for loading conditions with changing temperature and strain rate.</p>\",\"PeriodicalId\":726,\"journal\":{\"name\":\"Physical Mesomechanics\",\"volume\":\"27 4\",\"pages\":\"370 - 386\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Mesomechanics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1029959924040027\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Mesomechanics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1029959924040027","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Two-Level Constitutive Model of Metal with a Comprehensive Account of Temperature and Strain Rate Changes
An important goal of industrial development is to improve the forming and thermomechanical processing technologies, both in order to get the best characteristics of finished products and to reduce energy costs and material consumption. The key step in solving such problems is the correct formulation of a material constitutive model. The temperature and strain rate attained in particular metal forming processes can vary significantly and have a strong influence on the structural evolution of the material and, consequently, on the resulting physical and mechanical properties. However, there are almost no processes in which the temperature and strain rate are constant and equal at all points of the processed product. In this regard, it is relevant to build constitutive models that correctly account for the influence of changing temperature and strain rate on the material response. Based on our previous review, we propose here a modified two-level statistical model that correctly accounts for the temperature and strain rate effects on intragranular dislocation slip and the associated material response. The model parameters are determined for an fcc polycrystal of Al 2024-T351 alloy using literature data on the compression behavior of this alloy at different temperatures and strain rates. A detailed description is given for an algorithm developed to identify the model parameters using data from constant temperature and constant strain rate experiments. The proposed model showed adequate results for loading conditions with changing temperature and strain rate.
期刊介绍:
The journal provides an international medium for the publication of theoretical and experimental studies and reviews related in the physical mesomechanics and also solid-state physics, mechanics, materials science, geodynamics, non-destructive testing and in a large number of other fields where the physical mesomechanics may be used extensively. Papers dealing with the processing, characterization, structure and physical properties and computational aspects of the mesomechanics of heterogeneous media, fracture mesomechanics, physical mesomechanics of materials, mesomechanics applications for geodynamics and tectonics, mesomechanics of smart materials and materials for electronics, non-destructive testing are viewed as suitable for publication.