LevSeq:快速生成用于定向进化和机器学习的序列功能数据

Yueming Long, Ariane Mora, Emre Guersoy, Kadina E. Johnston, Francesca-Zhoufan Li, Frances H. Arnold
{"title":"LevSeq:快速生成用于定向进化和机器学习的序列功能数据","authors":"Yueming Long, Ariane Mora, Emre Guersoy, Kadina E. Johnston, Francesca-Zhoufan Li, Frances H. Arnold","doi":"10.1101/2024.09.04.611255","DOIUrl":null,"url":null,"abstract":"Sequence-function data provides valuable information about the protein functional landscape, but is rarely obtained during directed evolution campaigns. Here, we present Long-read every variant Sequencing (LevSeq), a pipeline that combines a dual barcoding strategy with nanopore sequencing to rapidly generate sequence-function data for entire protein-coding genes. LevSeq integrates into existing protein engineering workflows and comes with open-source software for data analysis and visualization. The pipeline facilitates data-driven protein engineering by consolidating sequence-function data to inform directed evolution and provide the requisite data for machine learning-guided protein engineering (MLPE). LevSeq enables quality control of mutagenesis libraries prior to screening, which reduces time and resource costs. Simulation studies demonstrate LevSeq's ability to accurately detect variants under various experimental conditions. Finally, we show LevSeq's utility in engineering protoglobins for new-to-nature chemistry. Widespread adoption of LevSeq and sharing of the data will enhance our understanding of protein sequence-function landscapes and empower data-driven directed evolution.","PeriodicalId":501147,"journal":{"name":"bioRxiv - Biochemistry","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LevSeq: Rapid Generation of Sequence-Function Data for Directed Evolution and Machine Learning\",\"authors\":\"Yueming Long, Ariane Mora, Emre Guersoy, Kadina E. Johnston, Francesca-Zhoufan Li, Frances H. Arnold\",\"doi\":\"10.1101/2024.09.04.611255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sequence-function data provides valuable information about the protein functional landscape, but is rarely obtained during directed evolution campaigns. Here, we present Long-read every variant Sequencing (LevSeq), a pipeline that combines a dual barcoding strategy with nanopore sequencing to rapidly generate sequence-function data for entire protein-coding genes. LevSeq integrates into existing protein engineering workflows and comes with open-source software for data analysis and visualization. The pipeline facilitates data-driven protein engineering by consolidating sequence-function data to inform directed evolution and provide the requisite data for machine learning-guided protein engineering (MLPE). LevSeq enables quality control of mutagenesis libraries prior to screening, which reduces time and resource costs. Simulation studies demonstrate LevSeq's ability to accurately detect variants under various experimental conditions. Finally, we show LevSeq's utility in engineering protoglobins for new-to-nature chemistry. Widespread adoption of LevSeq and sharing of the data will enhance our understanding of protein sequence-function landscapes and empower data-driven directed evolution.\",\"PeriodicalId\":501147,\"journal\":{\"name\":\"bioRxiv - Biochemistry\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Biochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.04.611255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.04.611255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

序列功能数据提供了有关蛋白质功能图谱的宝贵信息,但在定向进化活动中却很少能获得。在这里,我们介绍长读每一个变体测序(LevSeq),这是一种结合了双重条形码策略和纳米孔测序的管道,可快速生成整个蛋白质编码基因的序列功能数据。LevSeq 可集成到现有的蛋白质工程工作流程中,并配有用于数据分析和可视化的开源软件。该管道通过整合序列功能数据,为定向进化提供信息,并为机器学习引导的蛋白质工程(MLPE)提供必要的数据,从而促进数据驱动的蛋白质工程。LevSeq 可在筛选前对诱变文库进行质量控制,从而减少时间和资源成本。模拟研究证明了 LevSeq 在各种实验条件下准确检测变体的能力。最后,我们还展示了 LevSeq 在新自然化学原球蛋白工程中的实用性。LevSeq 的广泛应用和数据共享将增强我们对蛋白质序列功能图谱的理解,并提高数据驱动的定向进化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LevSeq: Rapid Generation of Sequence-Function Data for Directed Evolution and Machine Learning
Sequence-function data provides valuable information about the protein functional landscape, but is rarely obtained during directed evolution campaigns. Here, we present Long-read every variant Sequencing (LevSeq), a pipeline that combines a dual barcoding strategy with nanopore sequencing to rapidly generate sequence-function data for entire protein-coding genes. LevSeq integrates into existing protein engineering workflows and comes with open-source software for data analysis and visualization. The pipeline facilitates data-driven protein engineering by consolidating sequence-function data to inform directed evolution and provide the requisite data for machine learning-guided protein engineering (MLPE). LevSeq enables quality control of mutagenesis libraries prior to screening, which reduces time and resource costs. Simulation studies demonstrate LevSeq's ability to accurately detect variants under various experimental conditions. Finally, we show LevSeq's utility in engineering protoglobins for new-to-nature chemistry. Widespread adoption of LevSeq and sharing of the data will enhance our understanding of protein sequence-function landscapes and empower data-driven directed evolution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cytosolic CRISPR RNA for RNA-targeting CRISPR-Cas systems Molecular activity mediates the composition and assembly of dissolved organic matter in lake sediments Structural insights into terminal arabinosylation biosynthesis of the mycobacterial cell wall arabinan Mechanistic studies of mycobacterial glycolipid biosynthesis by the mannosyltransferase PimE Affinity tag free purification of SARS-Cov-2 N protein and its crystal structure in complex with ssDNA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1