基于成像和实验室内生物标记对心肌梗死患者进行无监督分层

Dolors Serra, Pau Romero, Paula Franco, Ignacio Bernat, Miguel Lozano, Ignacio Garcia-Fernandez, David Soto, Antonio Berruezo, Oscar Camara, Rafael Sebastian
{"title":"基于成像和实验室内生物标记对心肌梗死患者进行无监督分层","authors":"Dolors Serra, Pau Romero, Paula Franco, Ignacio Bernat, Miguel Lozano, Ignacio Garcia-Fernandez, David Soto, Antonio Berruezo, Oscar Camara, Rafael Sebastian","doi":"arxiv-2409.06526","DOIUrl":null,"url":null,"abstract":"This study presents a novel methodology for stratifying post-myocardial\ninfarction patients at risk of ventricular arrhythmias using patient-specific\n3D cardiac models derived from late gadolinium enhancement cardiovascular\nmagnetic resonance (LGE-CMR) images. The method integrates imaging and\ncomputational simulation with a simplified cellular automaton model,\nArrhythmic3D, enabling rapid and accurate VA risk assessment in clinical\ntimeframes. Applied to 51 patients, the model generated thousands of\npersonalized simulations to evaluate arrhythmia inducibility and predict VA\nrisk. Key findings include the identification of slow conduction channels\n(SCCs) within scar tissue as critical to reentrant arrhythmias and the\nlocalization of high-risk zones for potential intervention. The Arrhythmic Risk\nScore (ARRISK), developed from simulation results, demonstrated strong\nconcordance with clinical outcomes and outperformed traditional imaging-based\nrisk stratification. The methodology is fully automated, requiring minimal user\nintervention, and offers a promising tool for improving precision medicine in\ncardiac care by enhancing patient-specific arrhythmia risk assessment and\nguiding treatment strategies.","PeriodicalId":501378,"journal":{"name":"arXiv - PHYS - Medical Physics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unsupervised stratification of patients with myocardial infarction based on imaging and in-silico biomarkers\",\"authors\":\"Dolors Serra, Pau Romero, Paula Franco, Ignacio Bernat, Miguel Lozano, Ignacio Garcia-Fernandez, David Soto, Antonio Berruezo, Oscar Camara, Rafael Sebastian\",\"doi\":\"arxiv-2409.06526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a novel methodology for stratifying post-myocardial\\ninfarction patients at risk of ventricular arrhythmias using patient-specific\\n3D cardiac models derived from late gadolinium enhancement cardiovascular\\nmagnetic resonance (LGE-CMR) images. The method integrates imaging and\\ncomputational simulation with a simplified cellular automaton model,\\nArrhythmic3D, enabling rapid and accurate VA risk assessment in clinical\\ntimeframes. Applied to 51 patients, the model generated thousands of\\npersonalized simulations to evaluate arrhythmia inducibility and predict VA\\nrisk. Key findings include the identification of slow conduction channels\\n(SCCs) within scar tissue as critical to reentrant arrhythmias and the\\nlocalization of high-risk zones for potential intervention. The Arrhythmic Risk\\nScore (ARRISK), developed from simulation results, demonstrated strong\\nconcordance with clinical outcomes and outperformed traditional imaging-based\\nrisk stratification. The methodology is fully automated, requiring minimal user\\nintervention, and offers a promising tool for improving precision medicine in\\ncardiac care by enhancing patient-specific arrhythmia risk assessment and\\nguiding treatment strategies.\",\"PeriodicalId\":501378,\"journal\":{\"name\":\"arXiv - PHYS - Medical Physics\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Medical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项研究提出了一种新方法,利用从晚期钆增强心血管磁共振(LGE-CMR)图像中提取的患者特异性三维心脏模型,对心肌梗塞后患者的室性心律失常风险进行分层。该方法将成像和计算模拟与简化的细胞自动机模型 Arrhythmic3D 相结合,能够在临床时间内快速准确地评估 VA 风险。该模型应用于 51 名患者,生成了数千个个性化模拟,用于评估心律失常诱发性和预测 VA 风险。主要发现包括确定瘢痕组织内的慢传导通道(SCC)对再发性心律失常至关重要,以及定位潜在干预的高风险区。根据模拟结果开发的心律失常风险评分(ARRISK)与临床结果非常吻合,而且优于传统的基于成像的风险分层。该方法是全自动的,只需极少的用户干预,通过加强特定患者的心律失常风险评估和指导治疗策略,为改善心脏护理的精准医疗提供了一种前景广阔的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unsupervised stratification of patients with myocardial infarction based on imaging and in-silico biomarkers
This study presents a novel methodology for stratifying post-myocardial infarction patients at risk of ventricular arrhythmias using patient-specific 3D cardiac models derived from late gadolinium enhancement cardiovascular magnetic resonance (LGE-CMR) images. The method integrates imaging and computational simulation with a simplified cellular automaton model, Arrhythmic3D, enabling rapid and accurate VA risk assessment in clinical timeframes. Applied to 51 patients, the model generated thousands of personalized simulations to evaluate arrhythmia inducibility and predict VA risk. Key findings include the identification of slow conduction channels (SCCs) within scar tissue as critical to reentrant arrhythmias and the localization of high-risk zones for potential intervention. The Arrhythmic Risk Score (ARRISK), developed from simulation results, demonstrated strong concordance with clinical outcomes and outperformed traditional imaging-based risk stratification. The methodology is fully automated, requiring minimal user intervention, and offers a promising tool for improving precision medicine in cardiac care by enhancing patient-specific arrhythmia risk assessment and guiding treatment strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental Learning of a Hyperelastic Behavior with a Physics-Augmented Neural Network Modeling water radiolysis with Geant4-DNA: Impact of the temporal structure of the irradiation pulse under oxygen conditions Fast Spot Order Optimization to Increase Dose Rates in Scanned Particle Therapy FLASH Treatments The i-TED Compton Camera Array for real-time boron imaging and determination during treatments in Boron Neutron Capture Therapy OpenDosimeter: Open Hardware Personal X-ray Dosimeter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1