Dolors Serra, Pau Romero, Paula Franco, Ignacio Bernat, Miguel Lozano, Ignacio Garcia-Fernandez, David Soto, Antonio Berruezo, Oscar Camara, Rafael Sebastian
{"title":"基于成像和实验室内生物标记对心肌梗死患者进行无监督分层","authors":"Dolors Serra, Pau Romero, Paula Franco, Ignacio Bernat, Miguel Lozano, Ignacio Garcia-Fernandez, David Soto, Antonio Berruezo, Oscar Camara, Rafael Sebastian","doi":"arxiv-2409.06526","DOIUrl":null,"url":null,"abstract":"This study presents a novel methodology for stratifying post-myocardial\ninfarction patients at risk of ventricular arrhythmias using patient-specific\n3D cardiac models derived from late gadolinium enhancement cardiovascular\nmagnetic resonance (LGE-CMR) images. The method integrates imaging and\ncomputational simulation with a simplified cellular automaton model,\nArrhythmic3D, enabling rapid and accurate VA risk assessment in clinical\ntimeframes. Applied to 51 patients, the model generated thousands of\npersonalized simulations to evaluate arrhythmia inducibility and predict VA\nrisk. Key findings include the identification of slow conduction channels\n(SCCs) within scar tissue as critical to reentrant arrhythmias and the\nlocalization of high-risk zones for potential intervention. The Arrhythmic Risk\nScore (ARRISK), developed from simulation results, demonstrated strong\nconcordance with clinical outcomes and outperformed traditional imaging-based\nrisk stratification. The methodology is fully automated, requiring minimal user\nintervention, and offers a promising tool for improving precision medicine in\ncardiac care by enhancing patient-specific arrhythmia risk assessment and\nguiding treatment strategies.","PeriodicalId":501378,"journal":{"name":"arXiv - PHYS - Medical Physics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unsupervised stratification of patients with myocardial infarction based on imaging and in-silico biomarkers\",\"authors\":\"Dolors Serra, Pau Romero, Paula Franco, Ignacio Bernat, Miguel Lozano, Ignacio Garcia-Fernandez, David Soto, Antonio Berruezo, Oscar Camara, Rafael Sebastian\",\"doi\":\"arxiv-2409.06526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a novel methodology for stratifying post-myocardial\\ninfarction patients at risk of ventricular arrhythmias using patient-specific\\n3D cardiac models derived from late gadolinium enhancement cardiovascular\\nmagnetic resonance (LGE-CMR) images. The method integrates imaging and\\ncomputational simulation with a simplified cellular automaton model,\\nArrhythmic3D, enabling rapid and accurate VA risk assessment in clinical\\ntimeframes. Applied to 51 patients, the model generated thousands of\\npersonalized simulations to evaluate arrhythmia inducibility and predict VA\\nrisk. Key findings include the identification of slow conduction channels\\n(SCCs) within scar tissue as critical to reentrant arrhythmias and the\\nlocalization of high-risk zones for potential intervention. The Arrhythmic Risk\\nScore (ARRISK), developed from simulation results, demonstrated strong\\nconcordance with clinical outcomes and outperformed traditional imaging-based\\nrisk stratification. The methodology is fully automated, requiring minimal user\\nintervention, and offers a promising tool for improving precision medicine in\\ncardiac care by enhancing patient-specific arrhythmia risk assessment and\\nguiding treatment strategies.\",\"PeriodicalId\":501378,\"journal\":{\"name\":\"arXiv - PHYS - Medical Physics\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Medical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
这项研究提出了一种新方法,利用从晚期钆增强心血管磁共振(LGE-CMR)图像中提取的患者特异性三维心脏模型,对心肌梗塞后患者的室性心律失常风险进行分层。该方法将成像和计算模拟与简化的细胞自动机模型 Arrhythmic3D 相结合,能够在临床时间内快速准确地评估 VA 风险。该模型应用于 51 名患者,生成了数千个个性化模拟,用于评估心律失常诱发性和预测 VA 风险。主要发现包括确定瘢痕组织内的慢传导通道(SCC)对再发性心律失常至关重要,以及定位潜在干预的高风险区。根据模拟结果开发的心律失常风险评分(ARRISK)与临床结果非常吻合,而且优于传统的基于成像的风险分层。该方法是全自动的,只需极少的用户干预,通过加强特定患者的心律失常风险评估和指导治疗策略,为改善心脏护理的精准医疗提供了一种前景广阔的工具。
Unsupervised stratification of patients with myocardial infarction based on imaging and in-silico biomarkers
This study presents a novel methodology for stratifying post-myocardial
infarction patients at risk of ventricular arrhythmias using patient-specific
3D cardiac models derived from late gadolinium enhancement cardiovascular
magnetic resonance (LGE-CMR) images. The method integrates imaging and
computational simulation with a simplified cellular automaton model,
Arrhythmic3D, enabling rapid and accurate VA risk assessment in clinical
timeframes. Applied to 51 patients, the model generated thousands of
personalized simulations to evaluate arrhythmia inducibility and predict VA
risk. Key findings include the identification of slow conduction channels
(SCCs) within scar tissue as critical to reentrant arrhythmias and the
localization of high-risk zones for potential intervention. The Arrhythmic Risk
Score (ARRISK), developed from simulation results, demonstrated strong
concordance with clinical outcomes and outperformed traditional imaging-based
risk stratification. The methodology is fully automated, requiring minimal user
intervention, and offers a promising tool for improving precision medicine in
cardiac care by enhancing patient-specific arrhythmia risk assessment and
guiding treatment strategies.