{"title":"具有点奇异性的 Gevrey 类上 ReLUk 神经网络的指数表达能力","authors":"Joost A. A. Opschoor, Christoph Schwab","doi":"10.21136/am.2024.0052-24","DOIUrl":null,"url":null,"abstract":"<p>We analyze deep Neural Network emulation rates of smooth functions with point singularities in bounded, polytopal domains D ⊂ ℝ<sup>d</sup>, <i>d</i> = 2, 3. We prove exponential emulation rates in Sobolev spaces in terms of the number of neurons and in terms of the number of nonzero coefficients for Gevrey-regular solution classes defined in terms of weighted Sobolev scales in D, comprising the countably-normed spaces of I. M. Babuska and B. Q. Guo.</p><p>As intermediate result, we prove that continuous, piecewise polynomial high order (“<i>p</i>-version”) finite elements with elementwise polynomial degree <i>p</i> ∈ ℕ on arbitrary, regular, simplicial partitions of polyhedral domains D ⊂ ℝ<sup><i>d</i></sup>, <i>d</i> ⩾ 2, can be <i>exactly emulated</i> by neural networks combining ReLU and ReLU<sup>2</sup> activations.</p><p>On shape-regular, simplicial partitions of polytopal domains D, both the number of neurons and the number of nonzero parameters are proportional to the number of degrees of freedom of the <i>hp</i> finite element space of I. M. Babuška and B. Q. Guo.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exponential expressivity of ReLUk neural networks on Gevrey classes with point singularities\",\"authors\":\"Joost A. A. Opschoor, Christoph Schwab\",\"doi\":\"10.21136/am.2024.0052-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We analyze deep Neural Network emulation rates of smooth functions with point singularities in bounded, polytopal domains D ⊂ ℝ<sup>d</sup>, <i>d</i> = 2, 3. We prove exponential emulation rates in Sobolev spaces in terms of the number of neurons and in terms of the number of nonzero coefficients for Gevrey-regular solution classes defined in terms of weighted Sobolev scales in D, comprising the countably-normed spaces of I. M. Babuska and B. Q. Guo.</p><p>As intermediate result, we prove that continuous, piecewise polynomial high order (“<i>p</i>-version”) finite elements with elementwise polynomial degree <i>p</i> ∈ ℕ on arbitrary, regular, simplicial partitions of polyhedral domains D ⊂ ℝ<sup><i>d</i></sup>, <i>d</i> ⩾ 2, can be <i>exactly emulated</i> by neural networks combining ReLU and ReLU<sup>2</sup> activations.</p><p>On shape-regular, simplicial partitions of polytopal domains D, both the number of neurons and the number of nonzero parameters are proportional to the number of degrees of freedom of the <i>hp</i> finite element space of I. M. Babuška and B. Q. Guo.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.21136/am.2024.0052-24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.21136/am.2024.0052-24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们分析了有界多顶域 D ⊂ ℝd, d = 2, 3 中具有点奇异性的光滑函数的深度神经网络仿真率。我们用神经元的数量和非零系数的数量证明了 Sobolev 空间中以 D 中加权 Sobolev 标度定义的 Gevrey 不规则解类的指数仿真率,D 中包括 I. M. Babuska 和 B. Q. Guo 的可数规范空间。作为中间结果,我们证明了在多面体域 D ⊂ ℝd, d ⩾ 2 的任意、规则、简单分区上,具有元素多项式度 p∈ ℕ 的连续、片断多项式高阶("p-版本")有限元可以通过结合 ReLU 和 ReLU2 激活的神经网络精确模拟。在形状规则、简单分区的多面体域 D 上,神经元数量和非零参数数量都与 I. M. Babuška 和 B. Q. Guo 的 hp 有限元空间的自由度数量成正比。
Exponential expressivity of ReLUk neural networks on Gevrey classes with point singularities
We analyze deep Neural Network emulation rates of smooth functions with point singularities in bounded, polytopal domains D ⊂ ℝd, d = 2, 3. We prove exponential emulation rates in Sobolev spaces in terms of the number of neurons and in terms of the number of nonzero coefficients for Gevrey-regular solution classes defined in terms of weighted Sobolev scales in D, comprising the countably-normed spaces of I. M. Babuska and B. Q. Guo.
As intermediate result, we prove that continuous, piecewise polynomial high order (“p-version”) finite elements with elementwise polynomial degree p ∈ ℕ on arbitrary, regular, simplicial partitions of polyhedral domains D ⊂ ℝd, d ⩾ 2, can be exactly emulated by neural networks combining ReLU and ReLU2 activations.
On shape-regular, simplicial partitions of polytopal domains D, both the number of neurons and the number of nonzero parameters are proportional to the number of degrees of freedom of the hp finite element space of I. M. Babuška and B. Q. Guo.