利用地震心动图对心脏瓣膜事件进行无心电图评估

Mohammad Muntasir Rahman, Aysha Mann, Amirtaha Taebi
{"title":"利用地震心动图对心脏瓣膜事件进行无心电图评估","authors":"Mohammad Muntasir Rahman, Aysha Mann, Amirtaha Taebi","doi":"arxiv-2408.09513","DOIUrl":null,"url":null,"abstract":"Seismocardiogram (SCG) signals can play a crucial role in remote cardiac\nmonitoring, capturing important events such as aortic valve opening (AO) and\nmitral valve closure (MC). However, existing SCG methods for detecting AO and\nMC typically rely on electrocardiogram (ECG) data. In this study, we propose an\ninnovative approach to identify AO and MC events in SCG signals without the\nneed for ECG information. Our method utilized a template bank, which consists\nof signal templates extracted from SCG waveforms of 5 healthy subjects. These\ntemplates represent characteristic features of a heart cycle. When analyzing\nnew, unseen SCG signals from another group of 6 healthy subjects, we employ\nthese templates to accurately detect cardiac cycles and subsequently pinpoint\nAO and MC events. Our results demonstrate the effectiveness of the proposed\ntemplate bank approach in achieving ECG-independent AO and MC detection, laying\nthe groundwork for more convenient remote cardiovascular assessment.","PeriodicalId":501378,"journal":{"name":"arXiv - PHYS - Medical Physics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ECG-Free Assessment of Cardiac Valve Events Using Seismocardiography\",\"authors\":\"Mohammad Muntasir Rahman, Aysha Mann, Amirtaha Taebi\",\"doi\":\"arxiv-2408.09513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Seismocardiogram (SCG) signals can play a crucial role in remote cardiac\\nmonitoring, capturing important events such as aortic valve opening (AO) and\\nmitral valve closure (MC). However, existing SCG methods for detecting AO and\\nMC typically rely on electrocardiogram (ECG) data. In this study, we propose an\\ninnovative approach to identify AO and MC events in SCG signals without the\\nneed for ECG information. Our method utilized a template bank, which consists\\nof signal templates extracted from SCG waveforms of 5 healthy subjects. These\\ntemplates represent characteristic features of a heart cycle. When analyzing\\nnew, unseen SCG signals from another group of 6 healthy subjects, we employ\\nthese templates to accurately detect cardiac cycles and subsequently pinpoint\\nAO and MC events. Our results demonstrate the effectiveness of the proposed\\ntemplate bank approach in achieving ECG-independent AO and MC detection, laying\\nthe groundwork for more convenient remote cardiovascular assessment.\",\"PeriodicalId\":501378,\"journal\":{\"name\":\"arXiv - PHYS - Medical Physics\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Medical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.09513\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.09513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

地震心动图(SCG)信号可在远程心脏监测中发挥重要作用,捕捉主动脉瓣开放(AO)和半月瓣关闭(MC)等重要事件。然而,用于检测 AO 和 MC 的现有 SCG 方法通常依赖于心电图(ECG)数据。在这项研究中,我们提出了一种创新方法,无需心电图信息即可识别 SCG 信号中的 AO 和 MC 事件。我们的方法利用了一个模板库,该模板库由从 5 名健康受试者的 SCG 波形中提取的信号模板组成。这些模板代表了心动周期的特征。在分析来自另一组 6 名健康受试者的新的、未见过的 SCG 信号时,我们利用这些模板来准确检测心动周期,并随后精确定位 AO 和 MC 事件。我们的研究结果证明了所提出的模板库方法在实现独立于心电图的 AO 和 MC 检测方面的有效性,为更方便的远程心血管评估奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ECG-Free Assessment of Cardiac Valve Events Using Seismocardiography
Seismocardiogram (SCG) signals can play a crucial role in remote cardiac monitoring, capturing important events such as aortic valve opening (AO) and mitral valve closure (MC). However, existing SCG methods for detecting AO and MC typically rely on electrocardiogram (ECG) data. In this study, we propose an innovative approach to identify AO and MC events in SCG signals without the need for ECG information. Our method utilized a template bank, which consists of signal templates extracted from SCG waveforms of 5 healthy subjects. These templates represent characteristic features of a heart cycle. When analyzing new, unseen SCG signals from another group of 6 healthy subjects, we employ these templates to accurately detect cardiac cycles and subsequently pinpoint AO and MC events. Our results demonstrate the effectiveness of the proposed template bank approach in achieving ECG-independent AO and MC detection, laying the groundwork for more convenient remote cardiovascular assessment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental Learning of a Hyperelastic Behavior with a Physics-Augmented Neural Network Modeling water radiolysis with Geant4-DNA: Impact of the temporal structure of the irradiation pulse under oxygen conditions Fast Spot Order Optimization to Increase Dose Rates in Scanned Particle Therapy FLASH Treatments The i-TED Compton Camera Array for real-time boron imaging and determination during treatments in Boron Neutron Capture Therapy OpenDosimeter: Open Hardware Personal X-ray Dosimeter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1