D. D. Kuklina, A. Yu. Shishkin, I. O. Bezruchko, S. V. Kalenov, I. S. Okhrimenko, E. A. Dronova, A. E. Mikhailov, Yu. L. Ryzhykau
{"title":"嗜卤古细菌 Halobacterium salinarum 的培养","authors":"D. D. Kuklina, A. Yu. Shishkin, I. O. Bezruchko, S. V. Kalenov, I. S. Okhrimenko, E. A. Dronova, A. E. Mikhailov, Yu. L. Ryzhykau","doi":"10.1134/s1547477124701449","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>A light-sensitive protein from extremophile archaea <i>Halobacterium salinarum</i>, bacteriorhodopsin (<i>Hs</i>BR), has found numerous applications in pharmacology, biotechnology, bioelectronics and other fields [1, 2] due to its ability to convert light energy into a gradient of hydrogen ions across the cell membrane. Despite a wide range of its practical applications, the quantum mechanism of proton transfer remains not fully discovered yet. For further investigation and cost-effective implementation of developments, a higher yield of BR-rich biomass is necessitated. Hereafter we present our findings regarding efficient synthesis of <i>Hs</i>BR using its natural host, <i>H. salinarum.</i></p>","PeriodicalId":730,"journal":{"name":"Physics of Particles and Nuclei Letters","volume":"64 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cultivation of Halophilic Archaea Halobacterium salinarum\",\"authors\":\"D. D. Kuklina, A. Yu. Shishkin, I. O. Bezruchko, S. V. Kalenov, I. S. Okhrimenko, E. A. Dronova, A. E. Mikhailov, Yu. L. Ryzhykau\",\"doi\":\"10.1134/s1547477124701449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>A light-sensitive protein from extremophile archaea <i>Halobacterium salinarum</i>, bacteriorhodopsin (<i>Hs</i>BR), has found numerous applications in pharmacology, biotechnology, bioelectronics and other fields [1, 2] due to its ability to convert light energy into a gradient of hydrogen ions across the cell membrane. Despite a wide range of its practical applications, the quantum mechanism of proton transfer remains not fully discovered yet. For further investigation and cost-effective implementation of developments, a higher yield of BR-rich biomass is necessitated. Hereafter we present our findings regarding efficient synthesis of <i>Hs</i>BR using its natural host, <i>H. salinarum.</i></p>\",\"PeriodicalId\":730,\"journal\":{\"name\":\"Physics of Particles and Nuclei Letters\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of Particles and Nuclei Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1134/s1547477124701449\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Particles and Nuclei Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s1547477124701449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
Cultivation of Halophilic Archaea Halobacterium salinarum
Abstract
A light-sensitive protein from extremophile archaea Halobacterium salinarum, bacteriorhodopsin (HsBR), has found numerous applications in pharmacology, biotechnology, bioelectronics and other fields [1, 2] due to its ability to convert light energy into a gradient of hydrogen ions across the cell membrane. Despite a wide range of its practical applications, the quantum mechanism of proton transfer remains not fully discovered yet. For further investigation and cost-effective implementation of developments, a higher yield of BR-rich biomass is necessitated. Hereafter we present our findings regarding efficient synthesis of HsBR using its natural host, H. salinarum.
期刊介绍:
The journal Physics of Particles and Nuclei Letters, brief name Particles and Nuclei Letters, publishes the articles with results of the original theoretical, experimental, scientific-technical, methodological and applied research. Subject matter of articles covers: theoretical physics, elementary particle physics, relativistic nuclear physics, nuclear physics and related problems in other branches of physics, neutron physics, condensed matter physics, physics and engineering at low temperatures, physics and engineering of accelerators, physical experimental instruments and methods, physical computation experiments, applied research in these branches of physics and radiology, ecology and nuclear medicine.