Siga Selvin Deva Kumar, Rajesh Resselian, Dev Anand Manoharan, Yesudhasan Thooyavan, Joseph Selvi Binoj
{"title":"优化叶柄纤维/聚酯增强生物复合材料的纤维含量、长度及其对总体性能的影响","authors":"Siga Selvin Deva Kumar, Rajesh Resselian, Dev Anand Manoharan, Yesudhasan Thooyavan, Joseph Selvi Binoj","doi":"10.1002/pol.20240526","DOIUrl":null,"url":null,"abstract":"Despite their better mechanical qualities, plant fibers are now appreciated enough to be employed as an additional component in composite manufacture rather than synthetic materials. Industries are making efforts to preserve nature's ecological equilibrium in order to avoid catastrophic natural disasters. This study investigated thermal, mechanical, morphological, and moisture‐capture capabilities of Licuala grandis leaf stalk fibers (LGLSFs) reinforced in an unsaturated polyester resin (UPR) matrix biocomposite. Biocomposites were fabricated by compression molding technology, with different weight ratios and sizes. The biocomposite containing 30 wt.% and 5 mm length LGLSF had best mechanical properties, with equal impact (5.4 J/cm<jats:sup>2</jats:sup>), hardness (70.4 HRRW), flexural (58 MPa), and tensile (64.9 MPa) values. Furthermore, prolonging LGLSF reinforcement to 15 mm increased the bio‐composite specimen's tensile, flexural, hardness, and impact characteristics by 9.09%, 9.65%, 14.8%, and 6.25%, respectively. The Fourier transform infrared (FTIR), scanning electron microscopy (SEM), and X‐ray diffraction (XRD) spectra were analyzed to determine the bio‐composite's feasibility for commercial use. The bio‐composite specimen is ideal for usage in vehicle and aviation upholstery due to its sufficient hydrophobicity, lowered density, and heat resistance up to 236 °C, which are accomplished through a sufficient weight ratio of LGLSF and UPR, as well as LGLSF dimensions.","PeriodicalId":16888,"journal":{"name":"Journal of Polymer Science","volume":"43 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of fiber content, length and its effect on overall properties of Licuala grandis leaf stalk fiber/polyester reinforced bio‐composites\",\"authors\":\"Siga Selvin Deva Kumar, Rajesh Resselian, Dev Anand Manoharan, Yesudhasan Thooyavan, Joseph Selvi Binoj\",\"doi\":\"10.1002/pol.20240526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite their better mechanical qualities, plant fibers are now appreciated enough to be employed as an additional component in composite manufacture rather than synthetic materials. Industries are making efforts to preserve nature's ecological equilibrium in order to avoid catastrophic natural disasters. This study investigated thermal, mechanical, morphological, and moisture‐capture capabilities of Licuala grandis leaf stalk fibers (LGLSFs) reinforced in an unsaturated polyester resin (UPR) matrix biocomposite. Biocomposites were fabricated by compression molding technology, with different weight ratios and sizes. The biocomposite containing 30 wt.% and 5 mm length LGLSF had best mechanical properties, with equal impact (5.4 J/cm<jats:sup>2</jats:sup>), hardness (70.4 HRRW), flexural (58 MPa), and tensile (64.9 MPa) values. Furthermore, prolonging LGLSF reinforcement to 15 mm increased the bio‐composite specimen's tensile, flexural, hardness, and impact characteristics by 9.09%, 9.65%, 14.8%, and 6.25%, respectively. The Fourier transform infrared (FTIR), scanning electron microscopy (SEM), and X‐ray diffraction (XRD) spectra were analyzed to determine the bio‐composite's feasibility for commercial use. The bio‐composite specimen is ideal for usage in vehicle and aviation upholstery due to its sufficient hydrophobicity, lowered density, and heat resistance up to 236 °C, which are accomplished through a sufficient weight ratio of LGLSF and UPR, as well as LGLSF dimensions.\",\"PeriodicalId\":16888,\"journal\":{\"name\":\"Journal of Polymer Science\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/pol.20240526\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/pol.20240526","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Optimization of fiber content, length and its effect on overall properties of Licuala grandis leaf stalk fiber/polyester reinforced bio‐composites
Despite their better mechanical qualities, plant fibers are now appreciated enough to be employed as an additional component in composite manufacture rather than synthetic materials. Industries are making efforts to preserve nature's ecological equilibrium in order to avoid catastrophic natural disasters. This study investigated thermal, mechanical, morphological, and moisture‐capture capabilities of Licuala grandis leaf stalk fibers (LGLSFs) reinforced in an unsaturated polyester resin (UPR) matrix biocomposite. Biocomposites were fabricated by compression molding technology, with different weight ratios and sizes. The biocomposite containing 30 wt.% and 5 mm length LGLSF had best mechanical properties, with equal impact (5.4 J/cm2), hardness (70.4 HRRW), flexural (58 MPa), and tensile (64.9 MPa) values. Furthermore, prolonging LGLSF reinforcement to 15 mm increased the bio‐composite specimen's tensile, flexural, hardness, and impact characteristics by 9.09%, 9.65%, 14.8%, and 6.25%, respectively. The Fourier transform infrared (FTIR), scanning electron microscopy (SEM), and X‐ray diffraction (XRD) spectra were analyzed to determine the bio‐composite's feasibility for commercial use. The bio‐composite specimen is ideal for usage in vehicle and aviation upholstery due to its sufficient hydrophobicity, lowered density, and heat resistance up to 236 °C, which are accomplished through a sufficient weight ratio of LGLSF and UPR, as well as LGLSF dimensions.
期刊介绍:
Journal of Polymer Research provides a forum for the prompt publication of articles concerning the fundamental and applied research of polymers. Its great feature lies in the diversity of content which it encompasses, drawing together results from all aspects of polymer science and technology.
As polymer research is rapidly growing around the globe, the aim of this journal is to establish itself as a significant information tool not only for the international polymer researchers in academia but also for those working in industry. The scope of the journal covers a wide range of the highly interdisciplinary field of polymer science and technology.