微塑料污染土壤对番茄茄属植物生长的影响

Era Juliet Das, A. K. M. Rashidul Alam
{"title":"微塑料污染土壤对番茄茄属植物生长的影响","authors":"Era Juliet Das, A. K. M. Rashidul Alam","doi":"10.1186/s40068-024-00367-2","DOIUrl":null,"url":null,"abstract":"This study employed two prevalent plastic products - straws and microfiber as microplastics (MPs) to elucidate their largely unexplored effects on soil’s properties and the growth of the tomato plant (Solanum lycopersicum L.). For this experiment, a completely randomized design (CRD) was adopted where, straw - polypropylene (PP), microfiber - polyester (PES) + polyamide (PA), and their combinations (PP + PES + PA) were mixed with soil using different concentrations – 0% (control), 0.4%, 1%, and 2% (treatments) and kept for 45 days at room temperature. The findings demonstrated that incorporating 2% mixed MPs in soil significantly decreased bulk density and electrical conductivity 7.29% and 67.3%, respectively, while soil pH increased 17.84% in cultures containing 1% microfiber. Maximum water holding capacity (MWHC), soil organic carbon (SOC), and soil organic matter (SOM) showed varied responses based on MPs type and concentration. Specifically, MWHC increased 16.4% with 2% microfiber but declined 13.3% with 0.4% straw. The highest decreased (30.65%) in SOC and SOM were evident in cultures with 1% microfiber whereas increased 9.68% and 8.33% in cultures with 0.4% straw. In terms of the growth traits of S. lycopersicum, substantial reductions in plant height (56.37%), leaf number (54.37%), and girth diameter (56.43%) were observed in 2% straw containing cultures. Although no plant mortality was noted, the most pronounced reductions in leaf area (62.44%) and total plant biomass (68.16%) occurred in 2% microfiber cultures. Therefore, the ramifications of these findings may contribute to a deeper comprehension of the mechanisms and effects of MPs on soil properties and above-ground plant growth.","PeriodicalId":12037,"journal":{"name":"Environmental Systems Research","volume":"107 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of microplastics polluted soil on the growth of Solanum lycopersicum L.\",\"authors\":\"Era Juliet Das, A. K. M. Rashidul Alam\",\"doi\":\"10.1186/s40068-024-00367-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study employed two prevalent plastic products - straws and microfiber as microplastics (MPs) to elucidate their largely unexplored effects on soil’s properties and the growth of the tomato plant (Solanum lycopersicum L.). For this experiment, a completely randomized design (CRD) was adopted where, straw - polypropylene (PP), microfiber - polyester (PES) + polyamide (PA), and their combinations (PP + PES + PA) were mixed with soil using different concentrations – 0% (control), 0.4%, 1%, and 2% (treatments) and kept for 45 days at room temperature. The findings demonstrated that incorporating 2% mixed MPs in soil significantly decreased bulk density and electrical conductivity 7.29% and 67.3%, respectively, while soil pH increased 17.84% in cultures containing 1% microfiber. Maximum water holding capacity (MWHC), soil organic carbon (SOC), and soil organic matter (SOM) showed varied responses based on MPs type and concentration. Specifically, MWHC increased 16.4% with 2% microfiber but declined 13.3% with 0.4% straw. The highest decreased (30.65%) in SOC and SOM were evident in cultures with 1% microfiber whereas increased 9.68% and 8.33% in cultures with 0.4% straw. In terms of the growth traits of S. lycopersicum, substantial reductions in plant height (56.37%), leaf number (54.37%), and girth diameter (56.43%) were observed in 2% straw containing cultures. Although no plant mortality was noted, the most pronounced reductions in leaf area (62.44%) and total plant biomass (68.16%) occurred in 2% microfiber cultures. Therefore, the ramifications of these findings may contribute to a deeper comprehension of the mechanisms and effects of MPs on soil properties and above-ground plant growth.\",\"PeriodicalId\":12037,\"journal\":{\"name\":\"Environmental Systems Research\",\"volume\":\"107 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Systems Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40068-024-00367-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Systems Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40068-024-00367-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用了两种常见的塑料产品--秸秆和超细纤维作为微塑料(MPs),以阐明它们对土壤性质和番茄(Solanum lycopersicum L.)生长的影响。该实验采用了完全随机设计(CRD),将稻草-聚丙烯(PP)、超细纤维-聚酯(PES)+聚酰胺(PA)以及它们的组合(PP + PES + PA)与土壤混合,使用不同的浓度--0%(对照)、0.4%、1% 和 2%(处理),并在室温下保持 45 天。研究结果表明,在土壤中加入 2% 的混合 MPs 会显著降低容重和导电率,降幅分别为 7.29% 和 67.3%,而在含有 1% 超细纤维的培养物中,土壤 pH 值提高了 17.84%。最大持水量(MWHC)、土壤有机碳(SOC)和土壤有机质(SOM)因 MPs 类型和浓度的不同而表现出不同的反应。具体来说,2% 的超细纤维使最大持水量增加了 16.4%,而 0.4% 的稻草使最大持水量减少了 13.3%。在使用 1%超细纤维的培养物中,SOC 和 SOM 的降幅最大(30.65%),而在使用 0.4% 稻草的培养物中,SOC 和 SOM 的降幅分别为 9.68% 和 8.33%。就番茄的生长特性而言,在含有 2% 稻草的培养物中观察到植株高度(56.37%)、叶片数(54.37%)和周径(56.43%)大幅降低。虽然没有发现植物死亡,但在 2% 的超细纤维培养物中,叶面积(62.44%)和植物总生物量(68.16%)的减少最为明显。因此,这些发现可能有助于更深入地理解多孔质微粒对土壤特性和地上植物生长的机制和影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of microplastics polluted soil on the growth of Solanum lycopersicum L.
This study employed two prevalent plastic products - straws and microfiber as microplastics (MPs) to elucidate their largely unexplored effects on soil’s properties and the growth of the tomato plant (Solanum lycopersicum L.). For this experiment, a completely randomized design (CRD) was adopted where, straw - polypropylene (PP), microfiber - polyester (PES) + polyamide (PA), and their combinations (PP + PES + PA) were mixed with soil using different concentrations – 0% (control), 0.4%, 1%, and 2% (treatments) and kept for 45 days at room temperature. The findings demonstrated that incorporating 2% mixed MPs in soil significantly decreased bulk density and electrical conductivity 7.29% and 67.3%, respectively, while soil pH increased 17.84% in cultures containing 1% microfiber. Maximum water holding capacity (MWHC), soil organic carbon (SOC), and soil organic matter (SOM) showed varied responses based on MPs type and concentration. Specifically, MWHC increased 16.4% with 2% microfiber but declined 13.3% with 0.4% straw. The highest decreased (30.65%) in SOC and SOM were evident in cultures with 1% microfiber whereas increased 9.68% and 8.33% in cultures with 0.4% straw. In terms of the growth traits of S. lycopersicum, substantial reductions in plant height (56.37%), leaf number (54.37%), and girth diameter (56.43%) were observed in 2% straw containing cultures. Although no plant mortality was noted, the most pronounced reductions in leaf area (62.44%) and total plant biomass (68.16%) occurred in 2% microfiber cultures. Therefore, the ramifications of these findings may contribute to a deeper comprehension of the mechanisms and effects of MPs on soil properties and above-ground plant growth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessment of land cover degradation due to mining activities using remote sensing and digital photogrammetry A comprehensive review on challenges and choices of food waste in Saudi Arabia: exploring environmental and economic impacts Performance evaluation of integrated Upflow Anaerobic Sludge Blanket reactor with trickling filter used for municipal wastewater treatment and effluent reuse potential for agriculture Machine learning downscaling of GRACE/GRACE-FO data to capture spatial-temporal drought effects on groundwater storage at a local scale under data-scarcity Downstream impacts of dam breach using HEC-RAS: a case of Budhigandaki concrete arch dam in central Nepal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1