软性自振荡肢体的物理同步,实现快速自主运动

Alberto Comoretto, Harmannus A. H. Schomaker, Johannes T. B. Overvelde
{"title":"软性自振荡肢体的物理同步,实现快速自主运动","authors":"Alberto Comoretto, Harmannus A. H. Schomaker, Johannes T. B. Overvelde","doi":"arxiv-2409.07011","DOIUrl":null,"url":null,"abstract":"Animals achieve robust locomotion by offloading regulation from the brain to\nphysical couplings within the body. Contrarily, locomotion in artificial\nsystems often depends on centralized processors. Here, we introduce a rapid and\nautonomous locomotion strategy with synchronized gaits emerging through\nphysical interactions between self-oscillating limbs and the environment,\nwithout control signals. Each limb is a single soft tube that only requires\nconstant flow of air to perform cyclic stepping motions at frequencies reaching\n300 hertz. By combining several of these self-oscillating limbs, their physical\nsynchronization enables tethered and untethered locomotion speeds that are\norders of magnitude faster than comparable state-of-the-art. We demonstrate\nthat these seemingly simple devices exhibit autonomy, including obstacle\navoidance and phototaxis, opening up avenues for robust and functional robots\nat all scales.","PeriodicalId":501083,"journal":{"name":"arXiv - PHYS - Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physical synchronization of soft self-oscillating limbs for fast and autonomous locomotion\",\"authors\":\"Alberto Comoretto, Harmannus A. H. Schomaker, Johannes T. B. Overvelde\",\"doi\":\"arxiv-2409.07011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Animals achieve robust locomotion by offloading regulation from the brain to\\nphysical couplings within the body. Contrarily, locomotion in artificial\\nsystems often depends on centralized processors. Here, we introduce a rapid and\\nautonomous locomotion strategy with synchronized gaits emerging through\\nphysical interactions between self-oscillating limbs and the environment,\\nwithout control signals. Each limb is a single soft tube that only requires\\nconstant flow of air to perform cyclic stepping motions at frequencies reaching\\n300 hertz. By combining several of these self-oscillating limbs, their physical\\nsynchronization enables tethered and untethered locomotion speeds that are\\norders of magnitude faster than comparable state-of-the-art. We demonstrate\\nthat these seemingly simple devices exhibit autonomy, including obstacle\\navoidance and phototaxis, opening up avenues for robust and functional robots\\nat all scales.\",\"PeriodicalId\":501083,\"journal\":{\"name\":\"arXiv - PHYS - Applied Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Applied Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

动物通过将调节从大脑转移到身体内部的物理耦合来实现稳健的运动。相反,人工系统中的运动通常依赖于集中式处理器。在这里,我们介绍了一种快速自主的运动策略,通过自振荡肢体与环境之间的物理交互作用产生同步步态,无需控制信号。每个肢体都是一根软管,只需要恒定的气流,就能以高达 300 赫兹的频率完成循环步态运动。通过将多个自振荡肢体组合在一起,它们之间的物理同步实现了系留和非系留运动速度,其速度比同类最先进产品快了数个数量级。我们展示了这些看似简单的装置所表现出的自主性,包括障碍物规避和光向导,为在所有尺度上制造坚固耐用的功能性机器人开辟了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Physical synchronization of soft self-oscillating limbs for fast and autonomous locomotion
Animals achieve robust locomotion by offloading regulation from the brain to physical couplings within the body. Contrarily, locomotion in artificial systems often depends on centralized processors. Here, we introduce a rapid and autonomous locomotion strategy with synchronized gaits emerging through physical interactions between self-oscillating limbs and the environment, without control signals. Each limb is a single soft tube that only requires constant flow of air to perform cyclic stepping motions at frequencies reaching 300 hertz. By combining several of these self-oscillating limbs, their physical synchronization enables tethered and untethered locomotion speeds that are orders of magnitude faster than comparable state-of-the-art. We demonstrate that these seemingly simple devices exhibit autonomy, including obstacle avoidance and phototaxis, opening up avenues for robust and functional robots at all scales.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultrafast cascade charge transfer in multi bandgap colloidal quantum dot solids enables threshold reduction for optical gain and stimulated emission p-(001)NiO/n-(0001)ZnO Heterostructures based Ultraviolet Photodetectors Normal/inverse Doppler effect of backward volume magnetostatic spin waves Unattended field measurement of bird source level Fabrication of Ultra-Thick Masks for X-ray Phase Contrast Imaging at Higher Energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1