铁电异质结构中的负电容

Yuchu Qin, Jiangyu Li
{"title":"铁电异质结构中的负电容","authors":"Yuchu Qin, Jiangyu Li","doi":"arxiv-2409.06156","DOIUrl":null,"url":null,"abstract":"Negative capacitance can be used to overcome the lower limit of subthreshold\nswing (SS) in field effect transistors (FETs), enabling ultralow-power\nmicroelectronics, though the concept of ferroelectric negative capacitance\nremains contentious. In this work, we analyze the negative capacitance in\nferroelectric/dielectric heterostructure rigorously using Landau-Denvonshire\ntheory, identifying three (one) critical dielectric thicknesses for first\n(second) order ferroelectric phase transition upon which the stability of\nnegative capacitance changes. A critical electric window is also identified,\nbeyond which the ferroelectric negative capacitance cannot be maintained.\nBetween the first and second critical thicknesses, meta-stable negative\ncapacitance exists near zero polarization, yet it will be lost and cannot be\nrecovered when the electric window is broken. Between the second and third\ncritical thicknesses, stable negative capacitance always exists near zero\npolarization within the electric window regardless of initial polar state,\nresulting in hysteretic double P-E loop. Beyond the third (first) critical\nthickness of first (second) order phase transition, P-E loop becomes hysteresis\nfree, though the spontaneous polarization can still be induced at sufficient\nlarge electric field. Singularities in the effective dielectric constant is\nalso observed at the critical thickness or electric field. The analysis\ndemonstrates that the negative capacitance of ferroelectric can be stabilized\nby linear dielectric within a critical electric window, and the negative\ncapacitance can be either hysteresis free or hysteretic for first order\nferroelectrics, while it is always hysteresis free for the second order\nferroelectrics.","PeriodicalId":501083,"journal":{"name":"arXiv - PHYS - Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the negative capacitance in ferroelectric heterostructures\",\"authors\":\"Yuchu Qin, Jiangyu Li\",\"doi\":\"arxiv-2409.06156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Negative capacitance can be used to overcome the lower limit of subthreshold\\nswing (SS) in field effect transistors (FETs), enabling ultralow-power\\nmicroelectronics, though the concept of ferroelectric negative capacitance\\nremains contentious. In this work, we analyze the negative capacitance in\\nferroelectric/dielectric heterostructure rigorously using Landau-Denvonshire\\ntheory, identifying three (one) critical dielectric thicknesses for first\\n(second) order ferroelectric phase transition upon which the stability of\\nnegative capacitance changes. A critical electric window is also identified,\\nbeyond which the ferroelectric negative capacitance cannot be maintained.\\nBetween the first and second critical thicknesses, meta-stable negative\\ncapacitance exists near zero polarization, yet it will be lost and cannot be\\nrecovered when the electric window is broken. Between the second and third\\ncritical thicknesses, stable negative capacitance always exists near zero\\npolarization within the electric window regardless of initial polar state,\\nresulting in hysteretic double P-E loop. Beyond the third (first) critical\\nthickness of first (second) order phase transition, P-E loop becomes hysteresis\\nfree, though the spontaneous polarization can still be induced at sufficient\\nlarge electric field. Singularities in the effective dielectric constant is\\nalso observed at the critical thickness or electric field. The analysis\\ndemonstrates that the negative capacitance of ferroelectric can be stabilized\\nby linear dielectric within a critical electric window, and the negative\\ncapacitance can be either hysteresis free or hysteretic for first order\\nferroelectrics, while it is always hysteresis free for the second order\\nferroelectrics.\",\"PeriodicalId\":501083,\"journal\":{\"name\":\"arXiv - PHYS - Applied Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Applied Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

负电容可用于克服场效应晶体管(FET)的次阈值波动(SS)下限,从而实现超低功耗微电子技术,但铁电负电容的概念仍存在争议。在这项工作中,我们利用朗道-登文希理论对负电容的铁电/介电异质结构进行了严格分析,确定了一阶(二阶)铁电相变的三(1)个临界介电厚度,在此厚度上负电容的稳定性会发生变化。在第一和第二临界厚度之间,接近零极化时存在元稳定负电容,但当电窗被打破时,负电容将消失且无法恢复。在第二和第三个临界厚度之间,无论初始极化状态如何,稳定的负电容始终存在于电窗内的零极化附近,从而形成滞后的双 P-E 回路。超过第一(二)阶相变的第三(一)临界厚度后,P-E 回路变得无滞后,但在足够大的电场下仍能诱发自发极化。在临界厚度或电场处也观察到了有效介电常数的奇点。分析表明,铁电的负电容可以通过临界电窗内的线性介电质稳定下来,对于一阶铁电,负电容可以是无滞后的,也可以是滞后的,而对于二阶铁电,负电容总是无滞后的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the negative capacitance in ferroelectric heterostructures
Negative capacitance can be used to overcome the lower limit of subthreshold swing (SS) in field effect transistors (FETs), enabling ultralow-power microelectronics, though the concept of ferroelectric negative capacitance remains contentious. In this work, we analyze the negative capacitance in ferroelectric/dielectric heterostructure rigorously using Landau-Denvonshire theory, identifying three (one) critical dielectric thicknesses for first (second) order ferroelectric phase transition upon which the stability of negative capacitance changes. A critical electric window is also identified, beyond which the ferroelectric negative capacitance cannot be maintained. Between the first and second critical thicknesses, meta-stable negative capacitance exists near zero polarization, yet it will be lost and cannot be recovered when the electric window is broken. Between the second and third critical thicknesses, stable negative capacitance always exists near zero polarization within the electric window regardless of initial polar state, resulting in hysteretic double P-E loop. Beyond the third (first) critical thickness of first (second) order phase transition, P-E loop becomes hysteresis free, though the spontaneous polarization can still be induced at sufficient large electric field. Singularities in the effective dielectric constant is also observed at the critical thickness or electric field. The analysis demonstrates that the negative capacitance of ferroelectric can be stabilized by linear dielectric within a critical electric window, and the negative capacitance can be either hysteresis free or hysteretic for first order ferroelectrics, while it is always hysteresis free for the second order ferroelectrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultrafast cascade charge transfer in multi bandgap colloidal quantum dot solids enables threshold reduction for optical gain and stimulated emission p-(001)NiO/n-(0001)ZnO Heterostructures based Ultraviolet Photodetectors Normal/inverse Doppler effect of backward volume magnetostatic spin waves Unattended field measurement of bird source level Fabrication of Ultra-Thick Masks for X-ray Phase Contrast Imaging at Higher Energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1