C. Castillo, J. Panadero, E. J. Alvarez-Palau, A. A. Juan
{"title":"实现更环保的城市物流:应用敏捷路由算法优化巴塞罗那微型枢纽的分布","authors":"C. Castillo, J. Panadero, E. J. Alvarez-Palau, A. A. Juan","doi":"10.1186/s12544-024-00669-7","DOIUrl":null,"url":null,"abstract":"The COVID-19 pandemic accelerated the shift towards online shopping, reshaping consumer habits and intensifying the impact on urban freight distribution. This disruption exacerbated traffic congestion and parking shortages in cities, underscoring the need for sustainable distribution models. The European Union's common transport policy advocates for innovative UFD approaches that promote intermodal transportation, reduce traffic, and optimize cargo loads. Our study addresses these challenges by proposing an agile routing algorithm for an alternative UFD model in Barcelona. This model suggests strategically located micro-hubs selected from a set of railway facilities, markets, shopping centers, district buildings, pickup points, post offices, and parking lots (1057 points in total). It also promotes intermodality through cargo bikes and electric vans. The study has two main objectives: (i) to identify a network of intermodal micro-hubs for the efficient delivery of parcels in Barcelona and (ii) to develop an agile routing algorithm to optimize their location. The algorithm generates adaptive distribution plans considering micro-hub operating costs and vehicle routing costs, and using heuristic and machine learning methods enhanced by parallelization techniques. It swiftly produces high-quality routing plans based on transportation infrastructure, transportation modes, and delivery locations. The algorithm adapts dynamically and employs multi-objective techniques to establish the Pareto frontier for each plan. Real-world testing in Barcelona, using actual data has shown promising results, providing potential scenarios to reduce CO2 emissions and improve delivery times. As such, this research offers an innovative and sustainable approach to UFD, that will contribute significantly to a greener future for cities.","PeriodicalId":12079,"journal":{"name":"European Transport Research Review","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards greener city logistics: an application of agile routing algorithms to optimize the distribution of micro-hubs in Barcelona\",\"authors\":\"C. Castillo, J. Panadero, E. J. Alvarez-Palau, A. A. Juan\",\"doi\":\"10.1186/s12544-024-00669-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The COVID-19 pandemic accelerated the shift towards online shopping, reshaping consumer habits and intensifying the impact on urban freight distribution. This disruption exacerbated traffic congestion and parking shortages in cities, underscoring the need for sustainable distribution models. The European Union's common transport policy advocates for innovative UFD approaches that promote intermodal transportation, reduce traffic, and optimize cargo loads. Our study addresses these challenges by proposing an agile routing algorithm for an alternative UFD model in Barcelona. This model suggests strategically located micro-hubs selected from a set of railway facilities, markets, shopping centers, district buildings, pickup points, post offices, and parking lots (1057 points in total). It also promotes intermodality through cargo bikes and electric vans. The study has two main objectives: (i) to identify a network of intermodal micro-hubs for the efficient delivery of parcels in Barcelona and (ii) to develop an agile routing algorithm to optimize their location. The algorithm generates adaptive distribution plans considering micro-hub operating costs and vehicle routing costs, and using heuristic and machine learning methods enhanced by parallelization techniques. It swiftly produces high-quality routing plans based on transportation infrastructure, transportation modes, and delivery locations. The algorithm adapts dynamically and employs multi-objective techniques to establish the Pareto frontier for each plan. Real-world testing in Barcelona, using actual data has shown promising results, providing potential scenarios to reduce CO2 emissions and improve delivery times. As such, this research offers an innovative and sustainable approach to UFD, that will contribute significantly to a greener future for cities.\",\"PeriodicalId\":12079,\"journal\":{\"name\":\"European Transport Research Review\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Transport Research Review\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12544-024-00669-7\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Transport Research Review","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12544-024-00669-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION","Score":null,"Total":0}
Towards greener city logistics: an application of agile routing algorithms to optimize the distribution of micro-hubs in Barcelona
The COVID-19 pandemic accelerated the shift towards online shopping, reshaping consumer habits and intensifying the impact on urban freight distribution. This disruption exacerbated traffic congestion and parking shortages in cities, underscoring the need for sustainable distribution models. The European Union's common transport policy advocates for innovative UFD approaches that promote intermodal transportation, reduce traffic, and optimize cargo loads. Our study addresses these challenges by proposing an agile routing algorithm for an alternative UFD model in Barcelona. This model suggests strategically located micro-hubs selected from a set of railway facilities, markets, shopping centers, district buildings, pickup points, post offices, and parking lots (1057 points in total). It also promotes intermodality through cargo bikes and electric vans. The study has two main objectives: (i) to identify a network of intermodal micro-hubs for the efficient delivery of parcels in Barcelona and (ii) to develop an agile routing algorithm to optimize their location. The algorithm generates adaptive distribution plans considering micro-hub operating costs and vehicle routing costs, and using heuristic and machine learning methods enhanced by parallelization techniques. It swiftly produces high-quality routing plans based on transportation infrastructure, transportation modes, and delivery locations. The algorithm adapts dynamically and employs multi-objective techniques to establish the Pareto frontier for each plan. Real-world testing in Barcelona, using actual data has shown promising results, providing potential scenarios to reduce CO2 emissions and improve delivery times. As such, this research offers an innovative and sustainable approach to UFD, that will contribute significantly to a greener future for cities.
期刊介绍:
European Transport Research Review (ETRR) is a peer-reviewed open access journal publishing original high-quality scholarly research and developments in areas related to transportation science, technologies, policy and practice. Established in 2008 by the European Conference of Transport Research Institutes (ECTRI), the Journal provides researchers and practitioners around the world with an authoritative forum for the dissemination and critical discussion of new ideas and methodologies that originate in, or are of special interest to, the European transport research community. The journal is unique in its field, as it covers all modes of transport and addresses both the engineering and the social science perspective, offering a truly multidisciplinary platform for researchers, practitioners, engineers and policymakers. ETRR is aimed at a readership including researchers, practitioners in the design and operation of transportation systems, and policymakers at the international, national, regional and local levels.