Michal Kaufman, Jaroslav Vlcek, Jiri Houska, Sadoon Farrukh, Stanislav Haviar
{"title":"设计并可扩展合成基于热致变色 VO2 的涂层,用于具有优异光学性能的节能智能窗","authors":"Michal Kaufman, Jaroslav Vlcek, Jiri Houska, Sadoon Farrukh, Stanislav Haviar","doi":"arxiv-2409.01745","DOIUrl":null,"url":null,"abstract":"We report strongly thermochromic YSZ/V0.855W0.018Sr0.127O2/SiO2 coatings,\nwhere YSZ is Y stabilized ZrO2, prepared using a scalable deposition technique\non standard glass at a low substrate temperature of 320 {\\deg}C and without any\nsubstrate bias voltage. The coatings exhibit a transition temperature of 22\n{\\deg}C with an integral luminous transmittance of 63.7% (low-temperature\nstate) and 60.7% (high-temperature state), and a modulation of the solar energy\ntransmittance of 11.2%. Such a combination of properties, together with the low\ndeposition temperature, fulfill the requirements for large-scale implementation\non building glass and have not been reported yet. Reactive high-power impulse\nmagnetron sputtering with a pulsed O2 flow feedback control allows us to\nprepare crystalline W and Sr co-doped VO2 of the correct stoichiometry. The W\ndoping of VO2 decreases the transition temperature, while the Sr doping of VO2\nincreases the luminous transmittance significantly. A coating design utilizing\na second-order interference in two antireflection layers is used to maximize\nboth the integral luminous transmittance and the modulation of the solar energy\ntransmittance. A compact crystalline structure of the bottom YSZ antireflection\nlayer further improves the VO2 crystallinity, while the top SiO2 antireflection\nlayer provides also the mechanical and environmental protection for the\nV0.855W0.018Sr0.127O2 layer.","PeriodicalId":501083,"journal":{"name":"arXiv - PHYS - Applied Physics","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Scalable Synthesis of Thermochromic VO2-Based Coatings for Energy-Saving Smart Windows with Exceptional Optical Performance\",\"authors\":\"Michal Kaufman, Jaroslav Vlcek, Jiri Houska, Sadoon Farrukh, Stanislav Haviar\",\"doi\":\"arxiv-2409.01745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report strongly thermochromic YSZ/V0.855W0.018Sr0.127O2/SiO2 coatings,\\nwhere YSZ is Y stabilized ZrO2, prepared using a scalable deposition technique\\non standard glass at a low substrate temperature of 320 {\\\\deg}C and without any\\nsubstrate bias voltage. The coatings exhibit a transition temperature of 22\\n{\\\\deg}C with an integral luminous transmittance of 63.7% (low-temperature\\nstate) and 60.7% (high-temperature state), and a modulation of the solar energy\\ntransmittance of 11.2%. Such a combination of properties, together with the low\\ndeposition temperature, fulfill the requirements for large-scale implementation\\non building glass and have not been reported yet. Reactive high-power impulse\\nmagnetron sputtering with a pulsed O2 flow feedback control allows us to\\nprepare crystalline W and Sr co-doped VO2 of the correct stoichiometry. The W\\ndoping of VO2 decreases the transition temperature, while the Sr doping of VO2\\nincreases the luminous transmittance significantly. A coating design utilizing\\na second-order interference in two antireflection layers is used to maximize\\nboth the integral luminous transmittance and the modulation of the solar energy\\ntransmittance. A compact crystalline structure of the bottom YSZ antireflection\\nlayer further improves the VO2 crystallinity, while the top SiO2 antireflection\\nlayer provides also the mechanical and environmental protection for the\\nV0.855W0.018Sr0.127O2 layer.\",\"PeriodicalId\":501083,\"journal\":{\"name\":\"arXiv - PHYS - Applied Physics\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Applied Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.01745\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们报告了强热致变色YSZ/V0.855W0.018Sr0.127O2/SiO2涂层(其中YSZ是Y稳定的ZrO2),该涂层是在320{/deg}C的低基底温度和无任何基底偏置电压条件下,采用可扩展的沉积技术在标准玻璃上制备的。涂层的转变温度为 22{/deg}C,整体透光率为 63.7%(低温态)和 60.7%(高温态),太阳能传输调制率为 11.2%。这样的性能组合,加上较低的沉积温度,满足了在建筑玻璃上大规模应用的要求,目前还没有相关报道。通过脉冲氧气流反馈控制的反应式高功率脉冲磁控溅射,我们制备出了具有正确化学计量的 W 和 Sr 共掺杂结晶 VO2。VO2 的 W 掺杂降低了转变温度,而 VO2 的 Sr 掺杂则显著提高了透光率。利用两个抗反射层中的二阶干涉进行涂层设计,可最大限度地提高整体透光率和太阳能传输调制。底部 YSZ 减反射层的紧凑结晶结构进一步提高了 VO2 的结晶度,而顶部 SiO2 减反射层还为 V0.855W0.018Sr0.127O2 层提供了机械和环境保护。
Design and Scalable Synthesis of Thermochromic VO2-Based Coatings for Energy-Saving Smart Windows with Exceptional Optical Performance
We report strongly thermochromic YSZ/V0.855W0.018Sr0.127O2/SiO2 coatings,
where YSZ is Y stabilized ZrO2, prepared using a scalable deposition technique
on standard glass at a low substrate temperature of 320 {\deg}C and without any
substrate bias voltage. The coatings exhibit a transition temperature of 22
{\deg}C with an integral luminous transmittance of 63.7% (low-temperature
state) and 60.7% (high-temperature state), and a modulation of the solar energy
transmittance of 11.2%. Such a combination of properties, together with the low
deposition temperature, fulfill the requirements for large-scale implementation
on building glass and have not been reported yet. Reactive high-power impulse
magnetron sputtering with a pulsed O2 flow feedback control allows us to
prepare crystalline W and Sr co-doped VO2 of the correct stoichiometry. The W
doping of VO2 decreases the transition temperature, while the Sr doping of VO2
increases the luminous transmittance significantly. A coating design utilizing
a second-order interference in two antireflection layers is used to maximize
both the integral luminous transmittance and the modulation of the solar energy
transmittance. A compact crystalline structure of the bottom YSZ antireflection
layer further improves the VO2 crystallinity, while the top SiO2 antireflection
layer provides also the mechanical and environmental protection for the
V0.855W0.018Sr0.127O2 layer.