MSRD 代码的新结构

Umberto Martínez-Peñas
{"title":"MSRD 代码的新结构","authors":"Umberto Martínez-Peñas","doi":"10.1007/s40314-024-02915-z","DOIUrl":null,"url":null,"abstract":"<p>In this work, we provide four methods for constructing new maximum sum-rank distance (MSRD) codes. The first method, a variant of cartesian products, allows faster decoding than known MSRD codes of the same parameters. The other three methods allow us to extend or modify existing MSRD codes in order to obtain new explicit MSRD codes for sets of matrix sizes (numbers of rows and columns in different blocks) that were not attainable by previous constructions. In this way, we show that MSRD codes exist (by giving explicit constructions) for new ranges of parameters, in particular with different numbers of rows and columns at different positions.</p>","PeriodicalId":51278,"journal":{"name":"Computational and Applied Mathematics","volume":"129 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New constructions of MSRD codes\",\"authors\":\"Umberto Martínez-Peñas\",\"doi\":\"10.1007/s40314-024-02915-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, we provide four methods for constructing new maximum sum-rank distance (MSRD) codes. The first method, a variant of cartesian products, allows faster decoding than known MSRD codes of the same parameters. The other three methods allow us to extend or modify existing MSRD codes in order to obtain new explicit MSRD codes for sets of matrix sizes (numbers of rows and columns in different blocks) that were not attainable by previous constructions. In this way, we show that MSRD codes exist (by giving explicit constructions) for new ranges of parameters, in particular with different numbers of rows and columns at different positions.</p>\",\"PeriodicalId\":51278,\"journal\":{\"name\":\"Computational and Applied Mathematics\",\"volume\":\"129 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40314-024-02915-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40314-024-02915-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们提供了四种构建新的最大和秩距离(MSRD)编码的方法。第一种方法是笛卡尔乘积的一种变体,与相同参数的已知 MSRD 码相比,它的解码速度更快。其他三种方法允许我们扩展或修改现有的 MSRD 码,以获得新的显式 MSRD 码,适用于矩阵大小(不同块中的行数和列数)的集合,而这些集合是以前的构造无法实现的。通过这种方法,我们证明了 MSRD 代码(通过给出明确的构造)适用于新的参数范围,特别是不同位置的不同行数和列数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
New constructions of MSRD codes

In this work, we provide four methods for constructing new maximum sum-rank distance (MSRD) codes. The first method, a variant of cartesian products, allows faster decoding than known MSRD codes of the same parameters. The other three methods allow us to extend or modify existing MSRD codes in order to obtain new explicit MSRD codes for sets of matrix sizes (numbers of rows and columns in different blocks) that were not attainable by previous constructions. In this way, we show that MSRD codes exist (by giving explicit constructions) for new ranges of parameters, in particular with different numbers of rows and columns at different positions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
11.50%
发文量
352
期刊介绍: Computational & Applied Mathematics began to be published in 1981. This journal was conceived as the main scientific publication of SBMAC (Brazilian Society of Computational and Applied Mathematics). The objective of the journal is the publication of original research in Applied and Computational Mathematics, with interfaces in Physics, Engineering, Chemistry, Biology, Operations Research, Statistics, Social Sciences and Economy. The journal has the usual quality standards of scientific international journals and we aim high level of contributions in terms of originality, depth and relevance.
期刊最新文献
Two efficient nonlinear conjugate gradient methods for Riemannian manifolds A new algorithm for approximating solutions of the common variational inclusion On some extension of Traub–Steffensen type methods in Banach spaces Neighbourhood and competition graphs under fuzzy incidence graph and its application Chebyshev polynomial derivative-based spectral tau approach for solving high-order differential equations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1