Hasan Pasalari, Hamed Gharibi, Siamak Darvishali, Mahdi Farzadkia
{"title":"不同预处理技术对厌氧消化过程中微生物群落的影响:系统综述","authors":"Hasan Pasalari, Hamed Gharibi, Siamak Darvishali, Mahdi Farzadkia","doi":"10.1007/s40201-024-00917-x","DOIUrl":null,"url":null,"abstract":"<div><p>Here we comprehensively review the available knowledge on effects of different pretreatment technologies on microbial population and microbial dynamics in anaerobic digestion (AD) fed with different substrates and different operational parameters. To identify peer-reviewed studies published in English-language journals, a comprehensive search was performed across multiple electronic databases. The eligible studies were analyzed to extract data and information pertaining to the configuration of anaerobic reactors, operational parameters, and various pretreatment processes such as chemical, biological, enzymatic, thermal, microaerobic, and ultrasonic. The findings derived from this current review demonstrated that different chemical, biological, and physical pretreatment technologies improve the biomethane potential (BMP) and potentially affect the dominant bacteria and archaea. Moreover, although hydrogenotrophic methanogenesis are more observed due to resistance to extreme conditions, methane production follows both aceticlastic and hydrogenotrophic pathways in AD assisted with different pretreatment process. <i>Firmicutes</i> and <i>Bacteroidetes</i> phyla of bacteria were the dominant hydrolytic bacteria due to synergetic effects of different pretreatment process on solubilization and bioavailability of recalcitrant substrates. In summary, a holistic understanding on bacteria and archaea communities, along with the mechanisms of the dominant microorganisms leads to enhanced stability and overall performance of anaerobic digestion (AD) processes.</p></div>","PeriodicalId":628,"journal":{"name":"Journal of Environmental Health Science and Engineering","volume":"22 2","pages":"439 - 453"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effects of different pretreatment technologies on microbial community in anaerobic digestion process: A systematic review\",\"authors\":\"Hasan Pasalari, Hamed Gharibi, Siamak Darvishali, Mahdi Farzadkia\",\"doi\":\"10.1007/s40201-024-00917-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Here we comprehensively review the available knowledge on effects of different pretreatment technologies on microbial population and microbial dynamics in anaerobic digestion (AD) fed with different substrates and different operational parameters. To identify peer-reviewed studies published in English-language journals, a comprehensive search was performed across multiple electronic databases. The eligible studies were analyzed to extract data and information pertaining to the configuration of anaerobic reactors, operational parameters, and various pretreatment processes such as chemical, biological, enzymatic, thermal, microaerobic, and ultrasonic. The findings derived from this current review demonstrated that different chemical, biological, and physical pretreatment technologies improve the biomethane potential (BMP) and potentially affect the dominant bacteria and archaea. Moreover, although hydrogenotrophic methanogenesis are more observed due to resistance to extreme conditions, methane production follows both aceticlastic and hydrogenotrophic pathways in AD assisted with different pretreatment process. <i>Firmicutes</i> and <i>Bacteroidetes</i> phyla of bacteria were the dominant hydrolytic bacteria due to synergetic effects of different pretreatment process on solubilization and bioavailability of recalcitrant substrates. In summary, a holistic understanding on bacteria and archaea communities, along with the mechanisms of the dominant microorganisms leads to enhanced stability and overall performance of anaerobic digestion (AD) processes.</p></div>\",\"PeriodicalId\":628,\"journal\":{\"name\":\"Journal of Environmental Health Science and Engineering\",\"volume\":\"22 2\",\"pages\":\"439 - 453\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Health Science and Engineering\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40201-024-00917-x\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Health Science and Engineering","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s40201-024-00917-x","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
The effects of different pretreatment technologies on microbial community in anaerobic digestion process: A systematic review
Here we comprehensively review the available knowledge on effects of different pretreatment technologies on microbial population and microbial dynamics in anaerobic digestion (AD) fed with different substrates and different operational parameters. To identify peer-reviewed studies published in English-language journals, a comprehensive search was performed across multiple electronic databases. The eligible studies were analyzed to extract data and information pertaining to the configuration of anaerobic reactors, operational parameters, and various pretreatment processes such as chemical, biological, enzymatic, thermal, microaerobic, and ultrasonic. The findings derived from this current review demonstrated that different chemical, biological, and physical pretreatment technologies improve the biomethane potential (BMP) and potentially affect the dominant bacteria and archaea. Moreover, although hydrogenotrophic methanogenesis are more observed due to resistance to extreme conditions, methane production follows both aceticlastic and hydrogenotrophic pathways in AD assisted with different pretreatment process. Firmicutes and Bacteroidetes phyla of bacteria were the dominant hydrolytic bacteria due to synergetic effects of different pretreatment process on solubilization and bioavailability of recalcitrant substrates. In summary, a holistic understanding on bacteria and archaea communities, along with the mechanisms of the dominant microorganisms leads to enhanced stability and overall performance of anaerobic digestion (AD) processes.
期刊介绍:
Journal of Environmental Health Science & Engineering is a peer-reviewed journal presenting timely research on all aspects of environmental health science, engineering and management.
A broad outline of the journal''s scope includes:
-Water pollution and treatment
-Wastewater treatment and reuse
-Air control
-Soil remediation
-Noise and radiation control
-Environmental biotechnology and nanotechnology
-Food safety and hygiene