Wei Chen, Qinglin Tang, Rui Xu, Jin Liu, Yao Wang, Wei Wang, Yanxin Wang, Christopher D. Snow, Jun Li, Matt J. Kipper, Laurence A. Belfiore, Jianguo Tang
{"title":"用于负多模式光子信息存储和加密的 Eu3+-诱导二嵌段共聚物纳米聚合体的全荧光论文","authors":"Wei Chen, Qinglin Tang, Rui Xu, Jin Liu, Yao Wang, Wei Wang, Yanxin Wang, Christopher D. Snow, Jun Li, Matt J. Kipper, Laurence A. Belfiore, Jianguo Tang","doi":"10.1016/j.apmt.2024.102416","DOIUrl":null,"url":null,"abstract":"The protection of personal information is becoming increasingly difficult in the age of rapid growth in communication and information technologies. However, current relating techniques, such as anti-counterfeiting, depend on the simple luminescence image and UV–recognition. Thus, advanced methods for information encryption and decryption are urgently required. Herein, we report a full fluorescence paper (FFP) containing stable, fluorescent Eu–induced diblock nanoaggregates (EIPAs), and design a negative photon information multiple encryption (NME) method. Multiple quenching mechanisms can be employed to encrypt and decrypt information, using different quenching molecules. These include an internal filtering effect, a dynamic quenching effect, and a combined static and dynamic quenching effect. The recovery of different information under different light sources enables encryption and decryption cycles.","PeriodicalId":8066,"journal":{"name":"Applied Materials Today","volume":"8 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Full fluorescence paper of Eu3+– induced diblock copolymer nanoaggregates for negative multiple mode photon information storage and encryption\",\"authors\":\"Wei Chen, Qinglin Tang, Rui Xu, Jin Liu, Yao Wang, Wei Wang, Yanxin Wang, Christopher D. Snow, Jun Li, Matt J. Kipper, Laurence A. Belfiore, Jianguo Tang\",\"doi\":\"10.1016/j.apmt.2024.102416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The protection of personal information is becoming increasingly difficult in the age of rapid growth in communication and information technologies. However, current relating techniques, such as anti-counterfeiting, depend on the simple luminescence image and UV–recognition. Thus, advanced methods for information encryption and decryption are urgently required. Herein, we report a full fluorescence paper (FFP) containing stable, fluorescent Eu–induced diblock nanoaggregates (EIPAs), and design a negative photon information multiple encryption (NME) method. Multiple quenching mechanisms can be employed to encrypt and decrypt information, using different quenching molecules. These include an internal filtering effect, a dynamic quenching effect, and a combined static and dynamic quenching effect. The recovery of different information under different light sources enables encryption and decryption cycles.\",\"PeriodicalId\":8066,\"journal\":{\"name\":\"Applied Materials Today\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Materials Today\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.apmt.2024.102416\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Materials Today","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.apmt.2024.102416","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
在通信和信息技术飞速发展的时代,个人信息的保护变得越来越困难。然而,目前的相关技术,如防伪技术,依赖于简单的发光图像和紫外线识别。因此,迫切需要先进的信息加密和解密方法。在此,我们报告了一种含有稳定的荧光 Eu 诱导二嵌纳米聚合体(EIPAs)的全荧光纸(FFP),并设计了一种负光子信息多重加密(NME)方法。利用不同的淬火分子,可以采用多种淬火机制来加密和解密信息。这些机制包括内部过滤效应、动态淬火效应以及静态和动态相结合的淬火效应。在不同光源下恢复不同信息可实现加密和解密循环。
Full fluorescence paper of Eu3+– induced diblock copolymer nanoaggregates for negative multiple mode photon information storage and encryption
The protection of personal information is becoming increasingly difficult in the age of rapid growth in communication and information technologies. However, current relating techniques, such as anti-counterfeiting, depend on the simple luminescence image and UV–recognition. Thus, advanced methods for information encryption and decryption are urgently required. Herein, we report a full fluorescence paper (FFP) containing stable, fluorescent Eu–induced diblock nanoaggregates (EIPAs), and design a negative photon information multiple encryption (NME) method. Multiple quenching mechanisms can be employed to encrypt and decrypt information, using different quenching molecules. These include an internal filtering effect, a dynamic quenching effect, and a combined static and dynamic quenching effect. The recovery of different information under different light sources enables encryption and decryption cycles.
期刊介绍:
Journal Name: Applied Materials Today
Focus:
Multi-disciplinary, rapid-publication journal
Focused on cutting-edge applications of novel materials
Overview:
New materials discoveries have led to exciting fundamental breakthroughs.
Materials research is now moving towards the translation of these scientific properties and principles.