通过结构评估进行自动混合物分析

IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry A Pub Date : 2024-09-12 DOI:10.1021/acs.jpca.4c03580
Zachary T.P. Fried, Brett A. McGuire
{"title":"通过结构评估进行自动混合物分析","authors":"Zachary T.P. Fried, Brett A. McGuire","doi":"10.1021/acs.jpca.4c03580","DOIUrl":null,"url":null,"abstract":"The determination of chemical mixture components is vital to a multitude of scientific fields. Oftentimes spectroscopic methods are employed to decipher the composition of these mixtures. However, the sheer density of spectral features present in spectroscopic databases can make unambiguous assignment to individual species challenging. Yet, components of a mixture are commonly chemically related due to environmental processes or shared precursor molecules. Therefore, analysis of the chemical relevance of a molecule is important when determining which species are present in a mixture. In this paper, we combine machine-learning molecular embedding methods with a graph-based ranking system to determine the likelihood of a molecule being present in a mixture based on the other known species and/or chemical priors. By incorporating this metric in a rotational spectroscopy mixture analysis algorithm, we demonstrate that the mixture components can be identified with extremely high accuracy (≥97%) in an efficient manner.","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated Mixture Analysis via Structural Evaluation\",\"authors\":\"Zachary T.P. Fried, Brett A. McGuire\",\"doi\":\"10.1021/acs.jpca.4c03580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The determination of chemical mixture components is vital to a multitude of scientific fields. Oftentimes spectroscopic methods are employed to decipher the composition of these mixtures. However, the sheer density of spectral features present in spectroscopic databases can make unambiguous assignment to individual species challenging. Yet, components of a mixture are commonly chemically related due to environmental processes or shared precursor molecules. Therefore, analysis of the chemical relevance of a molecule is important when determining which species are present in a mixture. In this paper, we combine machine-learning molecular embedding methods with a graph-based ranking system to determine the likelihood of a molecule being present in a mixture based on the other known species and/or chemical priors. By incorporating this metric in a rotational spectroscopy mixture analysis algorithm, we demonstrate that the mixture components can be identified with extremely high accuracy (≥97%) in an efficient manner.\",\"PeriodicalId\":59,\"journal\":{\"name\":\"The Journal of Physical Chemistry A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry A\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpca.4c03580\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c03580","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

化学混合物成分的测定对许多科学领域都至关重要。通常情况下,我们采用光谱方法来破译这些混合物的成分。然而,由于光谱数据库中的光谱特征密度非常大,因此很难明确地将其归类到单个物种中。然而,由于环境过程或共享前体分子,混合物中的成分通常具有化学相关性。因此,在确定混合物中存在哪些物种时,分析分子的化学相关性非常重要。在本文中,我们将机器学习分子嵌入方法与基于图的排序系统相结合,根据其他已知物种和/或化学先验来确定混合物中存在分子的可能性。通过将这一指标纳入旋转光谱混合物分析算法,我们证明了混合物成分能以极高的准确率(≥97%)被高效地识别出来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automated Mixture Analysis via Structural Evaluation
The determination of chemical mixture components is vital to a multitude of scientific fields. Oftentimes spectroscopic methods are employed to decipher the composition of these mixtures. However, the sheer density of spectral features present in spectroscopic databases can make unambiguous assignment to individual species challenging. Yet, components of a mixture are commonly chemically related due to environmental processes or shared precursor molecules. Therefore, analysis of the chemical relevance of a molecule is important when determining which species are present in a mixture. In this paper, we combine machine-learning molecular embedding methods with a graph-based ranking system to determine the likelihood of a molecule being present in a mixture based on the other known species and/or chemical priors. By incorporating this metric in a rotational spectroscopy mixture analysis algorithm, we demonstrate that the mixture components can be identified with extremely high accuracy (≥97%) in an efficient manner.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
期刊最新文献
DFT and Model Hamiltonian Study of Optoelectronic Properties of Some Low-Symmetry Graphene Quantum Dots. Force-Assisted Orbital Crossing in Mechanochemical Oxirane Ring Opening. Intramolecular Polarization Contributions to the pKa's of Carboxylic Acids Through the Chain Length Dependence of Vibrational Tag-Shifts in Cryogenically Cooled Pyridinium-(CH2)n-COOH (n = 1-7) Cations. Ordering Effect of Charge-Charge Repulsion in Doped Antiferromagnetic Lattices: A Coupled Cluster Study. Ring Currents in the Clar Goblet Calculated Using Configurational State Averaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1