Mao Cui;Yun Zhang;Chunling Fan;Raouf Hamzaoui;Qinglan Li
{"title":"利用三维和二维空间中的互补特征进行彩色点云质量评估","authors":"Mao Cui;Yun Zhang;Chunling Fan;Raouf Hamzaoui;Qinglan Li","doi":"10.1109/TMM.2024.3443634","DOIUrl":null,"url":null,"abstract":"Point Cloud Quality Assessment (PCQA) plays an essential role in optimizing point cloud acquisition, encoding, transmission, and rendering for human-centric visual media applications. In this paper, we propose an objective PCQA model using Complementary Features from 3D and 2D spaces, called CF-PCQA, to measure the visual quality of colored point clouds. First, we develop four effective features in 3D space to represent the perceptual properties of colored point clouds, which include curvature, kurtosis, luminance distance and hue features of points in 3D space. Second, we project the 3D point cloud onto 2D planes using patch projection and extract a structural similarity feature of the projected 2D images in the spatial domain, as well as a sub-band similarity feature in the wavelet domain. Finally, we propose a feature selection and a learning model to fuse high dimensional features and predict the visual quality of the colored point clouds. Extensive experimental results show that the Pearson Linear Correlation Coefficients (PLCCs) of the proposed CF-PCQA were 0.9117, 0.9005, 0.9340 and 0.9826 on the SIAT-PCQD, SJTU-PCQA, WPC2.0 and ICIP2020 datasets, respectively. Moreover, statistical significance tests demonstrate that the CF-PCQA significantly outperforms the state-of-the-art PCQA benchmark schemes on the four datasets.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"26 ","pages":"11111-11125"},"PeriodicalIF":8.4000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Colored Point Cloud Quality Assessment Using Complementary Features in 3D and 2D Spaces\",\"authors\":\"Mao Cui;Yun Zhang;Chunling Fan;Raouf Hamzaoui;Qinglan Li\",\"doi\":\"10.1109/TMM.2024.3443634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Point Cloud Quality Assessment (PCQA) plays an essential role in optimizing point cloud acquisition, encoding, transmission, and rendering for human-centric visual media applications. In this paper, we propose an objective PCQA model using Complementary Features from 3D and 2D spaces, called CF-PCQA, to measure the visual quality of colored point clouds. First, we develop four effective features in 3D space to represent the perceptual properties of colored point clouds, which include curvature, kurtosis, luminance distance and hue features of points in 3D space. Second, we project the 3D point cloud onto 2D planes using patch projection and extract a structural similarity feature of the projected 2D images in the spatial domain, as well as a sub-band similarity feature in the wavelet domain. Finally, we propose a feature selection and a learning model to fuse high dimensional features and predict the visual quality of the colored point clouds. Extensive experimental results show that the Pearson Linear Correlation Coefficients (PLCCs) of the proposed CF-PCQA were 0.9117, 0.9005, 0.9340 and 0.9826 on the SIAT-PCQD, SJTU-PCQA, WPC2.0 and ICIP2020 datasets, respectively. Moreover, statistical significance tests demonstrate that the CF-PCQA significantly outperforms the state-of-the-art PCQA benchmark schemes on the four datasets.\",\"PeriodicalId\":13273,\"journal\":{\"name\":\"IEEE Transactions on Multimedia\",\"volume\":\"26 \",\"pages\":\"11111-11125\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Multimedia\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10636765/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10636765/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Colored Point Cloud Quality Assessment Using Complementary Features in 3D and 2D Spaces
Point Cloud Quality Assessment (PCQA) plays an essential role in optimizing point cloud acquisition, encoding, transmission, and rendering for human-centric visual media applications. In this paper, we propose an objective PCQA model using Complementary Features from 3D and 2D spaces, called CF-PCQA, to measure the visual quality of colored point clouds. First, we develop four effective features in 3D space to represent the perceptual properties of colored point clouds, which include curvature, kurtosis, luminance distance and hue features of points in 3D space. Second, we project the 3D point cloud onto 2D planes using patch projection and extract a structural similarity feature of the projected 2D images in the spatial domain, as well as a sub-band similarity feature in the wavelet domain. Finally, we propose a feature selection and a learning model to fuse high dimensional features and predict the visual quality of the colored point clouds. Extensive experimental results show that the Pearson Linear Correlation Coefficients (PLCCs) of the proposed CF-PCQA were 0.9117, 0.9005, 0.9340 and 0.9826 on the SIAT-PCQD, SJTU-PCQA, WPC2.0 and ICIP2020 datasets, respectively. Moreover, statistical significance tests demonstrate that the CF-PCQA significantly outperforms the state-of-the-art PCQA benchmark schemes on the four datasets.
期刊介绍:
The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.