{"title":"主动投资组合管理中跟踪误差波动与风险价值的协调:新领域","authors":"Riccardo Lucchetti, Mihaela Nicolau, Giulio Palomba, Luca Riccetti","doi":"10.1007/s10614-024-10684-4","DOIUrl":null,"url":null,"abstract":"<p>This article introduces the Risk Balancing Frontier (RBF), a new portfolio boundary in the absolute risk-total return space: the RBF arises when two risk indicators, the Tracking Error Volatility (TEV) and the Value-at-Risk (VaR), are both constrained not to exceed pre-set maximum values. By focusing on the trade-off between the joint restrictions on the two risk indicators, this frontier is the set of all portfolios characterized by the minimum VaR attainable for each TEV level. First, the RBF is defined analytically and its mathematical properties are discussed: we show its connection with the Constrained Tracking Error Volatility Frontier (Jorion in Financ Anal J, 59(5):70–82, 2003. https://doi.org/10.2469/faj.v59.n5.2565) and the Constrained Value-at-Risk Frontier (Alexander and Baptista in J Econ Dyn Control, 32(3):779–820, 2008. https://doi.org/10.1016/j.jedc.2007.03.005) frontiers. Next, we explore computational issues implied with its construction, and we develop a fast and accurate algorithm to this aim. Finally, we perform an empirical example and consider its relevance in the context of applied finance: we show that the RBF provides a useful tool to investigate and solve potential agency problems.</p>","PeriodicalId":50647,"journal":{"name":"Computational Economics","volume":"9 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reconciling Tracking Error Volatility and Value-at-Risk in Active Portfolio Management: A New Frontier\",\"authors\":\"Riccardo Lucchetti, Mihaela Nicolau, Giulio Palomba, Luca Riccetti\",\"doi\":\"10.1007/s10614-024-10684-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article introduces the Risk Balancing Frontier (RBF), a new portfolio boundary in the absolute risk-total return space: the RBF arises when two risk indicators, the Tracking Error Volatility (TEV) and the Value-at-Risk (VaR), are both constrained not to exceed pre-set maximum values. By focusing on the trade-off between the joint restrictions on the two risk indicators, this frontier is the set of all portfolios characterized by the minimum VaR attainable for each TEV level. First, the RBF is defined analytically and its mathematical properties are discussed: we show its connection with the Constrained Tracking Error Volatility Frontier (Jorion in Financ Anal J, 59(5):70–82, 2003. https://doi.org/10.2469/faj.v59.n5.2565) and the Constrained Value-at-Risk Frontier (Alexander and Baptista in J Econ Dyn Control, 32(3):779–820, 2008. https://doi.org/10.1016/j.jedc.2007.03.005) frontiers. Next, we explore computational issues implied with its construction, and we develop a fast and accurate algorithm to this aim. Finally, we perform an empirical example and consider its relevance in the context of applied finance: we show that the RBF provides a useful tool to investigate and solve potential agency problems.</p>\",\"PeriodicalId\":50647,\"journal\":{\"name\":\"Computational Economics\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Economics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1007/s10614-024-10684-4\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Economics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1007/s10614-024-10684-4","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
Reconciling Tracking Error Volatility and Value-at-Risk in Active Portfolio Management: A New Frontier
This article introduces the Risk Balancing Frontier (RBF), a new portfolio boundary in the absolute risk-total return space: the RBF arises when two risk indicators, the Tracking Error Volatility (TEV) and the Value-at-Risk (VaR), are both constrained not to exceed pre-set maximum values. By focusing on the trade-off between the joint restrictions on the two risk indicators, this frontier is the set of all portfolios characterized by the minimum VaR attainable for each TEV level. First, the RBF is defined analytically and its mathematical properties are discussed: we show its connection with the Constrained Tracking Error Volatility Frontier (Jorion in Financ Anal J, 59(5):70–82, 2003. https://doi.org/10.2469/faj.v59.n5.2565) and the Constrained Value-at-Risk Frontier (Alexander and Baptista in J Econ Dyn Control, 32(3):779–820, 2008. https://doi.org/10.1016/j.jedc.2007.03.005) frontiers. Next, we explore computational issues implied with its construction, and we develop a fast and accurate algorithm to this aim. Finally, we perform an empirical example and consider its relevance in the context of applied finance: we show that the RBF provides a useful tool to investigate and solve potential agency problems.
期刊介绍:
Computational Economics, the official journal of the Society for Computational Economics, presents new research in a rapidly growing multidisciplinary field that uses advanced computing capabilities to understand and solve complex problems from all branches in economics. The topics of Computational Economics include computational methods in econometrics like filtering, bayesian and non-parametric approaches, markov processes and monte carlo simulation; agent based methods, machine learning, evolutionary algorithms, (neural) network modeling; computational aspects of dynamic systems, optimization, optimal control, games, equilibrium modeling; hardware and software developments, modeling languages, interfaces, symbolic processing, distributed and parallel processing