{"title":"利用基于因子的情景树生成技术进行多阶段国际投资组合选择","authors":"Zhiping Chen, Bingbing Ji, Jia Liu, Yu Mei","doi":"10.1007/s10614-024-10699-x","DOIUrl":null,"url":null,"abstract":"<p>To comprehensively reflect the heteroscedasticity, nonlinear dependence and heavy-tailed distributions of stock returns while reducing the huge cost of parameter estimation, we use the Fama-French three-factor model to describe stock returns and then model the factor dynamics by using the ARMA-GARCH and Student-<i>t</i> copula models. A factor-based scenario tree generation algorithm is thus proposed, and the corresponding multi-stage international portfolio selection model is constructed and its reformulation is derived. Different from the current literature, our proposed models can capture the dynamic dependence among international markets and the dynamics of exchange rates, and what’s more important, make it possible for the practical solution of large-scale multi-stage international portfolio selection problems. Considering three different objective functions and international investments in the USA, Japanese and European markets, we carry out a series of empirical studies to demonstrate the practicality and efficiency of the proposed factor-based scenario tree generation algorithm and multi-stage international portfolio selection models.</p>","PeriodicalId":50647,"journal":{"name":"Computational Economics","volume":"20 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Stage International Portfolio Selection with Factor-Based Scenario Tree Generation\",\"authors\":\"Zhiping Chen, Bingbing Ji, Jia Liu, Yu Mei\",\"doi\":\"10.1007/s10614-024-10699-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To comprehensively reflect the heteroscedasticity, nonlinear dependence and heavy-tailed distributions of stock returns while reducing the huge cost of parameter estimation, we use the Fama-French three-factor model to describe stock returns and then model the factor dynamics by using the ARMA-GARCH and Student-<i>t</i> copula models. A factor-based scenario tree generation algorithm is thus proposed, and the corresponding multi-stage international portfolio selection model is constructed and its reformulation is derived. Different from the current literature, our proposed models can capture the dynamic dependence among international markets and the dynamics of exchange rates, and what’s more important, make it possible for the practical solution of large-scale multi-stage international portfolio selection problems. Considering three different objective functions and international investments in the USA, Japanese and European markets, we carry out a series of empirical studies to demonstrate the practicality and efficiency of the proposed factor-based scenario tree generation algorithm and multi-stage international portfolio selection models.</p>\",\"PeriodicalId\":50647,\"journal\":{\"name\":\"Computational Economics\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Economics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1007/s10614-024-10699-x\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Economics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1007/s10614-024-10699-x","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
Multi-Stage International Portfolio Selection with Factor-Based Scenario Tree Generation
To comprehensively reflect the heteroscedasticity, nonlinear dependence and heavy-tailed distributions of stock returns while reducing the huge cost of parameter estimation, we use the Fama-French three-factor model to describe stock returns and then model the factor dynamics by using the ARMA-GARCH and Student-t copula models. A factor-based scenario tree generation algorithm is thus proposed, and the corresponding multi-stage international portfolio selection model is constructed and its reformulation is derived. Different from the current literature, our proposed models can capture the dynamic dependence among international markets and the dynamics of exchange rates, and what’s more important, make it possible for the practical solution of large-scale multi-stage international portfolio selection problems. Considering three different objective functions and international investments in the USA, Japanese and European markets, we carry out a series of empirical studies to demonstrate the practicality and efficiency of the proposed factor-based scenario tree generation algorithm and multi-stage international portfolio selection models.
期刊介绍:
Computational Economics, the official journal of the Society for Computational Economics, presents new research in a rapidly growing multidisciplinary field that uses advanced computing capabilities to understand and solve complex problems from all branches in economics. The topics of Computational Economics include computational methods in econometrics like filtering, bayesian and non-parametric approaches, markov processes and monte carlo simulation; agent based methods, machine learning, evolutionary algorithms, (neural) network modeling; computational aspects of dynamic systems, optimization, optimal control, games, equilibrium modeling; hardware and software developments, modeling languages, interfaces, symbolic processing, distributed and parallel processing