Willian Vieira de Oliveira, Luciano Vieira Dutra, Sidnei João Siqueira Sant’Anna
{"title":"为 SVM 分类展开多级聚类策略:光谱相似地表覆盖物判别案例研究","authors":"Willian Vieira de Oliveira, Luciano Vieira Dutra, Sidnei João Siqueira Sant’Anna","doi":"10.1080/2150704x.2024.2398813","DOIUrl":null,"url":null,"abstract":"In remote sensing applications, image classification algorithms normally require parameter optimization strategies to adapt to the complexities of the data and determine the model’s parameters for ...","PeriodicalId":49132,"journal":{"name":"Remote Sensing Letters","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unfolding multilevel agglomerative strategies for SVM classification: a case study in discriminating spectrally similar land covers\",\"authors\":\"Willian Vieira de Oliveira, Luciano Vieira Dutra, Sidnei João Siqueira Sant’Anna\",\"doi\":\"10.1080/2150704x.2024.2398813\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In remote sensing applications, image classification algorithms normally require parameter optimization strategies to adapt to the complexities of the data and determine the model’s parameters for ...\",\"PeriodicalId\":49132,\"journal\":{\"name\":\"Remote Sensing Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/2150704x.2024.2398813\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/2150704x.2024.2398813","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
Unfolding multilevel agglomerative strategies for SVM classification: a case study in discriminating spectrally similar land covers
In remote sensing applications, image classification algorithms normally require parameter optimization strategies to adapt to the complexities of the data and determine the model’s parameters for ...
期刊介绍:
Remote Sensing Letters is a peer-reviewed international journal committed to the rapid publication of articles advancing the science and technology of remote sensing as well as its applications. The journal originates from a successful section, of the same name, contained in the International Journal of Remote Sensing from 1983 –2009. Articles may address any aspect of remote sensing of relevance to the journal’s readership, including – but not limited to – developments in sensor technology, advances in image processing and Earth-orientated applications, whether terrestrial, oceanic or atmospheric. Articles should make a positive impact on the subject by either contributing new and original information or through provision of theoretical, methodological or commentary material that acts to strengthen the subject.