从黎曼曼曲面上的随机漫步推导出的加权张量和函数的尾界

Shih-Yu Chang
{"title":"从黎曼曼曲面上的随机漫步推导出的加权张量和函数的尾界","authors":"Shih-Yu Chang","doi":"arxiv-2409.00542","DOIUrl":null,"url":null,"abstract":"This paper presents significant advancements in tensor analysis and the study\nof random walks on manifolds. It introduces new tensor inequalities derived\nusing the Mond-Pecaric method, which enriches the existing mathematical tools\nfor tensor analysis. This method, developed by mathematicians Mond and Pecaric,\nis a powerful technique for establishing inequalities in linear operators and\nmatrices, using functional analysis and operator theory principles. The paper\nalso proposes novel lower and upper bounds for estimating column sums of\ntransition matrices based on their spectral information, which is critical for\nunderstanding random walk behavior. Additionally, it derives bounds for the\nright tail of weighted tensor sums derived from random walks on manifolds,\nutilizing the spectrum of the Laplace-Beltrami operator over the underlying\nmanifolds and new tensor inequalities to enhance the understanding of these\ncomplex mathematical structures.","PeriodicalId":501373,"journal":{"name":"arXiv - MATH - Spectral Theory","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tail Bounds for Functions of Weighted Tensor Sums Derived from Random Walks on Riemannian Manifolds\",\"authors\":\"Shih-Yu Chang\",\"doi\":\"arxiv-2409.00542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents significant advancements in tensor analysis and the study\\nof random walks on manifolds. It introduces new tensor inequalities derived\\nusing the Mond-Pecaric method, which enriches the existing mathematical tools\\nfor tensor analysis. This method, developed by mathematicians Mond and Pecaric,\\nis a powerful technique for establishing inequalities in linear operators and\\nmatrices, using functional analysis and operator theory principles. The paper\\nalso proposes novel lower and upper bounds for estimating column sums of\\ntransition matrices based on their spectral information, which is critical for\\nunderstanding random walk behavior. Additionally, it derives bounds for the\\nright tail of weighted tensor sums derived from random walks on manifolds,\\nutilizing the spectrum of the Laplace-Beltrami operator over the underlying\\nmanifolds and new tensor inequalities to enhance the understanding of these\\ncomplex mathematical structures.\",\"PeriodicalId\":501373,\"journal\":{\"name\":\"arXiv - MATH - Spectral Theory\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Spectral Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.00542\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Spectral Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了张量分析和流形上随机漫步研究的重大进展。它介绍了利用蒙德-佩卡里克方法推导出的新的张量不等式,该方法丰富了现有的张量分析数学工具。该方法由数学家蒙德和佩卡里克开发,是一种利用函数分析和算子理论原理建立线性算子和矩阵不等式的强大技术。论文还根据过渡矩阵的谱信息,提出了估计过渡矩阵列和的新下限和上限,这对理解随机漫步行为至关重要。此外,论文还推导了流形上随机漫步推导出的加权张量和的右尾边界,利用底层流形上的拉普拉斯-贝尔特拉米算子谱和新的张量不等式,加深了对这些复杂数学结构的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tail Bounds for Functions of Weighted Tensor Sums Derived from Random Walks on Riemannian Manifolds
This paper presents significant advancements in tensor analysis and the study of random walks on manifolds. It introduces new tensor inequalities derived using the Mond-Pecaric method, which enriches the existing mathematical tools for tensor analysis. This method, developed by mathematicians Mond and Pecaric, is a powerful technique for establishing inequalities in linear operators and matrices, using functional analysis and operator theory principles. The paper also proposes novel lower and upper bounds for estimating column sums of transition matrices based on their spectral information, which is critical for understanding random walk behavior. Additionally, it derives bounds for the right tail of weighted tensor sums derived from random walks on manifolds, utilizing the spectrum of the Laplace-Beltrami operator over the underlying manifolds and new tensor inequalities to enhance the understanding of these complex mathematical structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Uniform resolvent estimates, smoothing effects and spectral stability for the Heisenberg sublaplacian Topological and dynamical aspects of some spectral invariants of contact manifolds with circle action Open problem: Violation of locality for Schrödinger operators with complex potentials Arbitrarily Finely Divisible Matrices A review of a work by Raymond: Sturmian Hamiltonians with a large coupling constant -- periodic approximations and gap labels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1