在量子和模拟平台上加速频谱聚类

Xingzi Xu, Tuhin Sahai
{"title":"在量子和模拟平台上加速频谱聚类","authors":"Xingzi Xu, Tuhin Sahai","doi":"arxiv-2408.08486","DOIUrl":null,"url":null,"abstract":"We introduce a novel hybrid quantum-analog algorithm to perform graph\nclustering that exploits connections between the evolution of dynamical systems\non graphs and the underlying graph spectra. This approach constitutes a new\nclass of algorithms that combine emerging quantum and analog platforms to\naccelerate computations. Our hybrid algorithm is equivalent to spectral\nclustering and has a computational complexity of $O(N)$, where $N$ is the\nnumber of nodes in the graph, compared to $O(N^3)$ scaling on classical\ncomputing platforms. The proposed method employs the dynamic mode decomposition\n(DMD) framework on data generated by Schr\\\"{o}dinger dynamics embedded into the\nmanifold generated by the graph Laplacian. We prove and demonstrate that one\ncan extract the eigenvalues and scaled eigenvectors of the normalized graph\nLaplacian from quantum evolution on the graph by using DMD computations.","PeriodicalId":501373,"journal":{"name":"arXiv - MATH - Spectral Theory","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerating Spectral Clustering on Quantum and Analog Platforms\",\"authors\":\"Xingzi Xu, Tuhin Sahai\",\"doi\":\"arxiv-2408.08486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a novel hybrid quantum-analog algorithm to perform graph\\nclustering that exploits connections between the evolution of dynamical systems\\non graphs and the underlying graph spectra. This approach constitutes a new\\nclass of algorithms that combine emerging quantum and analog platforms to\\naccelerate computations. Our hybrid algorithm is equivalent to spectral\\nclustering and has a computational complexity of $O(N)$, where $N$ is the\\nnumber of nodes in the graph, compared to $O(N^3)$ scaling on classical\\ncomputing platforms. The proposed method employs the dynamic mode decomposition\\n(DMD) framework on data generated by Schr\\\\\\\"{o}dinger dynamics embedded into the\\nmanifold generated by the graph Laplacian. We prove and demonstrate that one\\ncan extract the eigenvalues and scaled eigenvectors of the normalized graph\\nLaplacian from quantum evolution on the graph by using DMD computations.\",\"PeriodicalId\":501373,\"journal\":{\"name\":\"arXiv - MATH - Spectral Theory\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Spectral Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.08486\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Spectral Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.08486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了一种新颖的量子模拟混合算法,利用图中动态系统的演化与底层图谱之间的联系进行图聚类。这种方法构成了一类结合新兴量子和模拟平台来加速计算的新算法。我们的混合算法等同于谱聚类,计算复杂度为 $O(N)$,其中 $N$ 是图中的节点数,而在经典计算平台上的计算复杂度为 $O(N^3)$。所提出的方法采用了动态模式分解(DMD)框架,将 Schr\"{o}dinger 动力学生成的数据嵌入到由图拉普拉奇生成的平面中。我们证明并演示了通过使用DMD计算,可以从图上的量子演化中提取归一化图拉普拉奇的特征值和缩放特征向量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accelerating Spectral Clustering on Quantum and Analog Platforms
We introduce a novel hybrid quantum-analog algorithm to perform graph clustering that exploits connections between the evolution of dynamical systems on graphs and the underlying graph spectra. This approach constitutes a new class of algorithms that combine emerging quantum and analog platforms to accelerate computations. Our hybrid algorithm is equivalent to spectral clustering and has a computational complexity of $O(N)$, where $N$ is the number of nodes in the graph, compared to $O(N^3)$ scaling on classical computing platforms. The proposed method employs the dynamic mode decomposition (DMD) framework on data generated by Schr\"{o}dinger dynamics embedded into the manifold generated by the graph Laplacian. We prove and demonstrate that one can extract the eigenvalues and scaled eigenvectors of the normalized graph Laplacian from quantum evolution on the graph by using DMD computations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Uniform resolvent estimates, smoothing effects and spectral stability for the Heisenberg sublaplacian Topological and dynamical aspects of some spectral invariants of contact manifolds with circle action Open problem: Violation of locality for Schrödinger operators with complex potentials Arbitrarily Finely Divisible Matrices A review of a work by Raymond: Sturmian Hamiltonians with a large coupling constant -- periodic approximations and gap labels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1